

MPPC & SPAD Future of Photon Counting Detectors

Slawomir Piatek

New Jersey Institute of Technology & Hamamatsu Photonics, Bridgewater, NJ, USA

10.1.2019

Index

- Introduction
- Single-Photon Avalanche Photodiode (SPAD)
- Silicon Photomultiplier (SiPM)
- Concluding remarks

Introduction

© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.

HAMAMATSU HOTON IS OUR BUSINESS

PD – Photodiode

APD – Avalanche photodiode

SPAD – Single-photon avalanche photodiodeSPPC – Single-pixel photon counter; another name for SPAD

SiPM – Silicon photomultiplier

MPPC – Multi-pixel photon counter; another name for SiPM

PMT – Photomultiplier tube

Generic PN junction: modes of operation

PN junction devices

- Detector of choice for sufficiently high input light level 1.
- Wide spectral coverage (from UV to IR) for a family of photodiodes 2.
- Inexpensive and easy to use 3.
- Low intrinsic noise 4.
- 5. Can be used in arrays and available in modules

Si PDs

InGaAS PDs

PD arrays with amplifier

PD module

- 1. Detector of choice for light levels too high for a PMT/SiPM but too low for a photodiode
- **2.** Intrinsic gain up to ~ 100
- 3. Wide spectral coverage (200 nm 1700 nm) for a family of avalanche photodiodes
- 4. Can be used in arrays
- 5. Available as part of a module

InGaAs APDs

Si APD array

APD module

Single-Photon Avalanche Photodiode (SPAD)

HAMAMATSU PHOTON IS OUR BUSINESS

Without quenching, SPAD operates as a light switch.

 $R_Q \gg R_l$

 R_o must be large enough to ensure quenching.

 $\Delta V = V_{BIAS} - V_{BD}$ (overvoltage)

Operation of a SPAD (passive quenching)

$$\mu = \frac{i_{max}R_QC_J}{e} = \frac{(V_{BIAS} - V_{BD})R_QC_J}{e(R_Q + R_d)} \approx \frac{(V_{BIAS} - V_{BD})C_J}{e} = \frac{\Delta VC_J}{e} \quad (gain)$$

© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 13

time

Photon counting with SPAD

Photon counting with SPAD

Active quenching

HAMAMATSU

Reference: "Progress in Quenching Circuits for Single Photon Avalanche Diodes," Gallivanoni, A., Rech, I., & Ghioni, M., IEEE Transactions on Nuclear Science, Vol. 57, No. 6, December 2010

HAMAMATSU PHOTON IS OUR BUSINESS

Photon detection efficiency is a probability that the incident photon is detected. It is a function of wavelength and overvoltage.

Photon Detection Efficiency

HAMAMATSU PHOTON IS OUR BUSINESS

For a given wavelength, photon detection efficiency increases with overvoltage.

Dark count rates

HAMAMATSU PHOTON IS OUR BUSINESS

Dark count rate depends on temperature and overvoltage. Typical values at room temperature and recommended overvoltage are 10s - 100s c/s, depending on the device design.

After-pulsing

HAMAMATSU PHOTON IS OUR BUSINESS

HAMAMATSU PHOTON IS OUR BUSINESS

Product example by Hamamatsu (C14463-050GD)

Photon counting module with SPAD (SPPC)

Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit
Spectral response range		λ		370 to 1000			nm
Peak sensitivity wavelength		λр		- 600 -		-	nm
Fiber connector*3		-			-		
Chip temperature (setting temperature)		Tchip		-	-20	-	°C
Photon detection efficiency		PDE		25	35	-	%
Dark count		CD		-	20	60	cps
Afterpulse probability		-	100 ns to 500 ns	-	0.1	-	%
Comparator output		-		TTL compatible			-
Current consumption	+5 V	Te		-	+200	+1000	
	-5 V			-	-20	-40	ma

Electrical and optical characteristics (Ta=25 °C, λ=600 nm, Vs=±5 V, unless otherwise noted)

*3: Recommended fiber: GI 50/125 multimode fiber

Each element of the array (pixel) has its own quenching circuitry (passive or active).

Each element of the array (pixel) has its own quenching circuitry (passive or active).

Product example by Hamamatsu (S15008-100NT-01)

SPPC Array Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Pixel pitch			-	100	-	μm
Number of pixels			-	32 × 32	-	Ch
Diameter and shapes		Octagonal	-	75×75	-	μm
Geometrical fill-factor	FF		-	61	-	%
Peak sensitive wavelength	λ _P		450	500	550	nm
Spectral response region	λ	25°C	380		900	nm
Breakdown voltage	V _{BR}	25°C	50	52	54	V
Temperature coefficient of V _{BR}	ΔT_{VBR}	-20 ~ +30°C		56		mV/°C
Gain	М			1 × 10 ⁶		-
		λ =470 nm		30		%
Photon detection efficiency	PDE	λ =525 nm		30		%
		λ =630 nm		20		%
Dark count rate	DCR	35°C, V _e =2.0V		20k		Hz
Cross talk probability	СТ	35°C, V _e =2.0V		75		%
Afterpulse probability	AP	50 ns hold-off		3		%

- 1. The array can be customized to specific user's needs.
- 2. Hamamatsu is working on improving crosstalk.
- 3. Hamamatsu is working on higher resolution array (smaller pixels).
- 4. Hamamatsu is working on IR version of the array.
- 5. Hamamatsu will work with users on developing customized ASICs
- 6. Demos are available for evaluation.

Importance of ASIC (example)

© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 29

- 1. Multiple pulse illumination provides distance information to the target. The information comes from a histogram of trigger times.
- 2. An ASIC producing such histogram (per pixel) is part of the sensor.

Silicon Photomultiplier (SiPM)

SiPM – Silicon Photomultiplier

MPPC – Multi-Pixel Photon Counter

Most-commonly-used names

SSPM – Solid-State Photomultiplier

PMAD – Multi-Pixel Avalanche Photodiode

G-APD – Geiger Mode Avalanche Photodiode

MPGM APDs – Multi-Pixel Geiger-Mode Avalanche Photodiodes

Structure

Also known as multi-pixel photon counter (MPPC)

Structure

All of the microcells are connected in parallel.

Example of models

HAMAMATSU PHOTON IS OUR BUSINESS

metal can, TE cooled, $3 \times 3 \text{ mm}^2$, $3,600, 50 \times 50 \text{ }\mu\text{m}^2$ ceramic, 1.3×1.3 mm², 2,668, 25×25 µm²

surface mount, $6 \times 6 \text{ mm}^2$, 14,555, 50 × 50 μm^2

- DG metal can CS – ceramic PE – surface mount
- VE 4-side buttable (best for arrays)

mm², 285, 75 × 75 μm²

Operation

HAMAMATSU

- The RC time constant of the slow component depends on microcell size (all else being equal)
- The recovery time $t_r \approx 5 \times$ the *RC* time constant
- t_r is on the order of 10s to 100s of ns but in practical situations it is also a function of the detection bandwidth

Crosstalk

Primary discharge can trigger a secondary discharge in neighboring microcells. This is crosstalk.

Crosstalk probability depends on overvoltage.

HAMAMATSU PHOTON IS OUR BUSINESS

Temperature sensor

$$V_{BD}(T) = V_{BD}(T_0) + \beta(T - T_0)$$

(breakdown voltage depends on temperature)

Example of SiPM (MPPC) module with temperature compensation

The role of the control unit is to adjust V_{BIAS} so that the overvoltage ΔV remains constant (and thus gain) as temperature changes.

Wavelength [nm]

$$N_f = N_t \left(1 - e^{-N_\gamma \cdot PDE/N_t} \right)$$

- N_t Number of microcells
- N_f Average number of fired μ -cells
- N_{γ} Number of photons in a pulse

In the limit of δ –illumination, dynamic range and linearity depend on the number of microcells.

 $N_f = N_t \left(\frac{T_P}{t_r}\right) \left(1 - exp \frac{-N_\gamma \cdot PDE}{\left(\frac{T_P}{t}\right)N_t}\right)$

- T_P Pulse duration
- t_r Recovery time

For a given number of photons in a pulse, the number of effective fired microcells increases with the pulse duration.

Linearity and dynamic range (DC)

For some SiPMs Hamamatsu provides a linearity plot for DC illumination. This plot can be transcribed from $\lambda = 850 nm$ to any other wavelength.

намаі

PHOTON IS OUR BUSINESS

Analog

PHOTON IS OUR BUSINESS

$$\begin{split} i_{ph} &= e\mu(1+P_{ct})\frac{PDE\cdot P\cdot\lambda}{hc} \\ \frac{S}{N} &= \frac{i_{ph}R_f}{\sqrt{i_{SS}^2R_f^2 + i_{DS}^2R_f^2 + \frac{4kT\Delta f}{R_f}R_f^2}} \\ i_{SS}^2 &= 2ei_{ph}\mu F\Delta f \qquad \text{(signal photon shot noise)} \\ i_{DS}^2 &= 2ei_D\mu F\Delta f \qquad \text{(dark current shot noise)} \end{split}$$

$$i_J^2 = \frac{4kT\Delta f}{R_f}$$

(Johnson noise of the feedback resistor)

Photon counting

Photon counting

HAMAMATSU

$$\frac{S}{N} = \frac{n_S \sqrt{T_{exp}}}{\sqrt{n_S + 2(n_B + n_D)}}$$

 T_{exp} – measurement time

 $n_S = n_{tot} - (n_B + n_D)$

 n_{tot} – number of counts per unit time due to "science" light, background light, and dark counts

 n_B – number of counts per unit time due to background light

 n_D – number of counts per unit time due to dark current

All rates are measured with the same exposure time T_{exp}

 $3 \times 3 \text{ mm}^2$, 50 μm

HAMAMATSU

Minimum detection limit (MDL) can be lowered by cooling and limiting the detection bandwidth.

SiPM imaging array, product example by Hamamatsu

S15013-0125NP-01

2D MPPC photon counting image sensor

This array can be used for imaging and for ToF distance measurement (e.g., in flash LiDAR).

Structure

Parameter	Symbol	Value	Unit
MPPC type	-	Equivalent to S14420 series	-
Number of channels	-	32 × 32	ch
Effective photosensitive area / channel	-	100 × 100	μm
Pixel pitch	-	25	μm
Number of pixels / channel	-	12	-
Fill factor	-	36.4	%
Package type	-	Connector	-
Window	-	Borosilicate glass	-
Reflective index of window materials	-	1.51	-

Electrical and optical characteristics (Ta=25 °C)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit		
Spectral response range	λ			550 to 1050				
Peak sensitivity wavelength	λр		-	840	-	nm		
Photon detection efficiency*2	PDE	λ=910 nm	-	6	-	%		
Dark count*3		Vop	-	2	-	kcps		
Breakdown voltage	VBR		-47.5	-42.5	-37.5	V		
Recommended operating voltage	Vop		-	VBR - 5	-	V		
Gain	М	Vop	-	1.0×10^{6}	-	-		
Temperature coefficient of VOP	ΔΤνορ		-	47	-	mV/°C		
Frame rate			-	10	-	kfps		
PLL frequency	FPLL		180	200	220	MHz		
TDC full-scale range		FPLL=200 MHz	-	-	10.24	μs		
TDC resolution		FPLL=200 MHz	-	312.5	-	ps		
TDC jitter		FWHM, FPLL=200 MHz	-	135	-	ps		

*2: Photon detection efficiency does not include crosstalk or afterpulses.

*3: Threshold=0.5 p.e.

Note: The above characterictics were measured the operating voltage that yields the listed gain in this catalog. (See the data attached to each product.)

Demo units, together with evaluation and interface boards, are available to potential users.

Future Applications for SPAD Arrays

Building a QKD system

While in principle all QKD protocols operate the same way and rest on the same core principles, in practice the complexity of implementation can dramatically vary with the specifically selected protocol and its associated components, the choice of which involve numerous trade-offs. (As with any cryptologic technology, real-world implementation needs to be carefully engineered to match the assumptions in the theoretical security proofs.)

	LIGHT SOURCE	MODULATION	TRUST Required	TRL		DIODE	OPTIMUM Temp.	DARK Counts	NIR Efficiency	LOSS Type Tolerance	SPACE Suitable	TRL	COST	
RS	Laser	phase, ampl., pol.	-			PIN	J	n/a	(n)	cv 🌔			€	ERS
NDE	Single photons	polarization	17		Quantum	APD	J		M	dv 🌘	۲		€€	EIVE
SE	Entangled photons	intrinsic	no		channel	SNSPD			(m)	DV 🌘			€€€	REC
	IMPLEME	NTATION	COMM	ERCIAL		MPLEMENTATION	TECHI	NICAL PARA	METERS	QKD PROTOCOL	CI	DMMERCIAL		
	Key management system en-/decryptor - Classi			ssical channel> en-/decryptor			Key management system							
	TRL= Technology Readiness Level. NIR= near infrared. A larger number of symbols indicates a higher value for the discussed parameter.													

Quantum Technology – Quantum Key Distribution

Solid State Flash LiDAR

Brain Activity Monitoring

- 1. Photon counting can be a preferred detection technique when the incident light level is low.
- 2. SPAD and SiPM are well-suited for photon counting.
- **3**. SPAD and SiPM image sensors are being developed.
- 4. Research and development continues to extend the detection into the IR regime.
- 5. Integration of ASICs with the SPAD or SiPM imagers is the most cost-effective approach. Hamamatsu provides support and will work with individual customers to provide solutions.

Join Us for 10 Weeks of FREE Photonics Webinars (17 Topics)

Week #	Weekly Topics	# of Talks	Talk #1 Date	Talk #2 Date
1	Introduction to Photodetectors	2	26-May-20	28-May-20
2	Emerging Applications - LiDAR & Flow Cytometry	2	2-Jun-20	4-Jun-20
3	Understanding Spectrometer	2	9-Jun-20	11-Jun-20
	1 Week Break			
4	Specialty Products – Introduction to Light Sources & X-Ray	2	23-Jun-20	25-Jun-20
5	Introduction to Image Sensors	2	30-Jun-20	02-Jul-20
	1 Week Break			
6	Specialty Products – Laser Driven Light Sources	2	14-Jul-20	16-Jul-20
7	Image Sensor Circuits and Scientific Camera	2	21-Jul-20	23-Jul-20
8	Mid-Infrared (MIR) Technologies & Applications	2	28-Jul-20	30-Jul-20
	1 Week Break			
9	Photon Counting Detectors – SiPM and SPAD	1	11-Aug-20	
10	Using SNR Simulation to Select a Photodetector	1	18-Aug-20	

To register for other webinars or hear previous webinar recordings, please visit link below: <u>https://www.hamamatsu.com/us/en/news/event/2020/20200526220000.html</u>

Thank you for listening.

Contact information:

piatek@njit.edu

www.hamamatsu.com