Digital X-ray image sensors developed as key devices for real-time X-ray imaging applications requiring high sensitivity and high image quality.
Contents

1. **X-ray Image Sensor Technology** ... 1
 1-1. CMOS Process Technology .. 1
 1-2. Scintillator Technology ... 1
 1-3. Assembly Technology ... 1
 1-4. IC Design Technology .. 2

2. **Line-up of Flat Panel Sensors** .. 3
 2-1. Radiology ... 3
 - Rotational radiography .. 3
 - Biochemistry .. 11
 - Diffraction ... 13

3. **Description of Terms** ... 15

4. **Operating Principle and Structure** ... 16
 4-1. Features ... 16
 4-2. Operating principle .. 16
 4-3. Active pixel construction ... 18
 4-4. Coupling method of scintillator 18
 4-5. Scintillator .. 19
 4-6. Window material of top cover ... 19
 4-7. X-ray radiation damage .. 19

5. **Features** ... 20
 5-1. Spatial resolution .. 20
 5-2. Dynamic range ... 20
 5-3. Detective quantum efficiency .. 20

6. **System Set-up** ... 21
 6-1. Set-up example (LVDS interface type) 21
 6-2. Precaution for power source configuration 21
 6-3. Frame grabber cables .. 21

7. **Image Samples** .. 22

8. **Related Products** ... 27
HAMAMATSU has been a leading supplier of opto-semiconductor sensors of diverse types and categories including sensors for high energy physics, UV sensors, visible light sensors, infrared sensors, position sensors, and linear or image sensors since 1957. Over the last 20 years, intense research and development have been made into various techniques for capturing X-ray images with solid state image sensors and some remarkable results have been achieved. Besides being ideal for digital imaging, solid state image sensors are expected to replace conventional image acquisition methods based on ortho film or imaging tubes. After years of laboratory development, HAMAMATSU has deemed digital X-ray imaging is ready. A unique flat panel sensor based on the single crystal CMOS technologies was developed in 1987. Then a prototype of CMOS flat panel sensor was fabricated in 1993. This sensor had a large pixel size and still retained an analog interface, but it was a milestone in the digital radiography field. The dedicated world’s first monolithic CMOS flat panel sensor with 12 cm photodiode array area was developed in 1999. The latest line-up of flat panel sensor still inherits the advantages of single crystal Si yet has expanded analog and digital performances achieved through CMOS technology and outstanding scintillator.

HAMAMATSU Flat Panel Sensor

Lineup of Flat Panel Sensors

<table>
<thead>
<tr>
<th>Application</th>
<th>Type no.</th>
<th>Scan mode</th>
<th>A/D (bits)</th>
<th>Pixel size (μm)</th>
<th>Photosensitive area ([H] × [V] mm)</th>
<th>Frame rate*1 (frames/s)</th>
<th>Scintillator</th>
<th>Energy range</th>
<th>Top cover material (thickness)</th>
<th>CE marking*2</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiology</td>
<td></td>
</tr>
<tr>
<td>Rotational radiography</td>
<td>C10900D</td>
<td>Fast</td>
<td>13</td>
<td>200</td>
<td>124.8 × 124.8</td>
<td>35</td>
<td>Direct deposition Cal</td>
<td>20 kVp to 90 kVp</td>
<td>Carbon fiber (0.4 mm)</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partial</td>
<td>12</td>
<td>100</td>
<td></td>
<td>70, 17, 280</td>
<td>Direct deposition Cal</td>
<td>20 kVp to 90 kVp</td>
<td>Carbon fiber (0.4 mm)</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fine</td>
<td>12</td>
<td>100</td>
<td>100.8 × 68.2</td>
<td>40</td>
<td>Direct deposition Cal</td>
<td>20 kVp to 90 kVp</td>
<td>Carbon fiber (0.4 mm)</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Panoramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct deposition Cal</td>
<td>20 kVp to 90 kVp</td>
<td>Carbon fiber (0.4 mm)</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>C10901D</td>
<td>Fast</td>
<td>13</td>
<td>200</td>
<td>124.8 × 124.8</td>
<td>35</td>
<td>Direct deposition Cal</td>
<td>20 kVp to 90 kVp</td>
<td>Carbon fiber (0.4 mm)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partial</td>
<td>12</td>
<td>100</td>
<td></td>
<td>70, 17, 280</td>
<td>Direct deposition Cal</td>
<td>20 kVp to 90 kVp</td>
<td>Carbon fiber (0.4 mm)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fine</td>
<td>12</td>
<td>100</td>
<td>100.8 × 68.2</td>
<td>40</td>
<td>Direct deposition Cal</td>
<td>20 kVp to 90 kVp</td>
<td>Carbon fiber (0.4 mm)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Panoramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct deposition Cal</td>
<td>20 kVp to 90 kVp</td>
<td>Carbon fiber (0.4 mm)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Biochemistry</td>
<td>C7942CK-22</td>
<td>-</td>
<td>12</td>
<td>100</td>
<td>152.5 & 6.0</td>
<td>300</td>
<td>Direct deposition Cal</td>
<td>20 kVp to 90 kVp</td>
<td>Carbon fiber (0.4 mm)</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>C9730DK-10</td>
<td>-</td>
<td>14</td>
<td>100</td>
<td>226.8 × 6.0</td>
<td>300</td>
<td>Direct deposition Cal</td>
<td>20 kVp to 90 kVp</td>
<td>Carbon fiber (0.4 mm)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C9732DK-11</td>
<td>-</td>
<td>14</td>
<td>100</td>
<td>120 × 120</td>
<td>252.8</td>
<td>Direct deposition Cal</td>
<td>20 kVp to 80 kVp</td>
<td>Carbon fiber (1.0 mm)</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Diffraction</td>
<td>C9728DK-10</td>
<td>-</td>
<td>14</td>
<td>50</td>
<td>120 × 120</td>
<td>252.8</td>
<td>Direct deposition Cal</td>
<td>17 keV (Mo source)</td>
<td>Carbon fiber (1.0 mm)</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C10158DK</td>
<td>Whole</td>
<td>14</td>
<td>50</td>
<td>118.8 × 118.8</td>
<td>3</td>
<td>Direct deposition Cal</td>
<td>18 keV max.</td>
<td>Carbon fiber (1.0 mm)</td>
<td>○</td>
<td></td>
</tr>
</tbody>
</table>

*1: Single operation
*2: Types marked with a circle (○) conform to the European EMC directives: EN61326-1 Class A.
Note: Please consult us for other energy ranges not listed above.
The HAMAMATSU flat panel sensor has not been legally approved for medical applications. This means that the flat panel sensor alone cannot be used as medical equipment. When incorporating the flat panel sensor in systems for medical applications, be sure to obtain any required legal approvals.
1. X-ray Image Sensor Technology

1-1. CMOS Process Technology
HAMAMATSU develops and manufactures unique flat panel sensors with large area, low noise and high resolution for X-ray imaging field. The latest Si process line realizes the world largest monolithic CMOS chip where optimized high performance electronics are obtained. HAMAMATSU can provide high-quality X-ray images for various X-ray imaging applications.

1-2. Scintillator Technology
HAMAMATSU has succeeded in developing an optimal and high-sensitivity X-ray device ideal for indirect X-ray detection. A CsI:Tl crystal plate with needle structure mounted on the largest formatted photodiode array allows the scintillation to propagate through the fiber-like-crystals. This structure offers advantages in light propagation over other scintillators of compound. Scintillator thickness has been optimized according to the application.

1-3. Assembly Technology
Assembling and packaging of flat panel sensor is of critical importance. It is considerably more challenging than for integrated circuits since flat panel sensors must interact with X-ray irradiation and other harsh environments in higher reliability. The latest robotics techniques were utilized to attain precision alignment, higher reliability assembling and stable quality in large size active area ranging from 5 × 5 cm to 27 × 22 cm.
In recent years, large formatted CMOS solid state image sensors of monocrystalline material have become available. These offer many options compared to ordinary amorphous Si and conventional imaging devices. We have developed many types of flat panel sensors that show the tremendous potential offered by large size image sensor devices made in a 0.6 μm standard CMOS process. These devices have an anti-blooming (overflow drain), a correlated double sampling (CDS) circuit, external frame start and binning functions.

1-4. IC Design Technology

Figure 3: CAD image of circuit design

Figure 4: CAD image of pattern design
Rotational radiography

2-1. Radiology

The C10900D series were developed for CT and panoramic imaging. It operates in 4 selectable scan modes to capture X-ray images: "Fast mode" and "Partial mode" with a pixel size of 200 × 200 µm, and "Fine mode" and "Panoramic mode" with a pixel size of 100 × 100 µm.

Features
- Four selectable scan mode
- High sensitivity
- High-speed frame rate: 280 frames/s (panoramic mode)
- Flat panel structure without image distortion
- Scintillator: direct deposition CsI
- For assembly into equipment: supplied without case

Applications
- Cone beam CT
- Digital radiography, etc.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>C10900D series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan mode</td>
<td>Fast mode</td>
</tr>
<tr>
<td>Pixel size</td>
<td>200</td>
</tr>
<tr>
<td>Photosensitive area</td>
<td>124.8 (H) × 124.8 (V)</td>
</tr>
<tr>
<td>Number of pixels</td>
<td>624 (H) × 624 (V)</td>
</tr>
<tr>
<td>Number of effective pixels</td>
<td>608 (H) × 616 (V)</td>
</tr>
<tr>
<td>Frame rate</td>
<td>35</td>
</tr>
<tr>
<td>Frame rate external</td>
<td>SF(int)^1 to 10</td>
</tr>
<tr>
<td>Noise*2</td>
<td>2900</td>
</tr>
<tr>
<td>Sensitivity*3</td>
<td>6000</td>
</tr>
<tr>
<td>Saturation charge</td>
<td>10.5</td>
</tr>
<tr>
<td>Resolution*4</td>
<td>2.5</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>3600</td>
</tr>
<tr>
<td>Defect line*5</td>
<td>8 max.</td>
</tr>
<tr>
<td>X-ray tube voltage</td>
<td>20 to 90</td>
</tr>
<tr>
<td>Digital output</td>
<td>13</td>
</tr>
<tr>
<td>Scintillator</td>
<td>Direct deposition CsI</td>
</tr>
<tr>
<td>Interface</td>
<td>C10900D</td>
</tr>
<tr>
<td>C10900D-40</td>
<td>Gigabit Ethernet</td>
</tr>
</tbody>
</table>

*1: Frame rate for internal mode
*2: Internal trigger mode
*3: At 80 kVp, acrylic filter 170 mm
*4: Spatial frequency at CTF=5%
*5: Adjacent defect lines are not allowed. For the definition of defect line, see Chapter 3, "Description of Terms".

Note: For detailed data on the products listed in this catalog, see their datasheets that are available from our website www.hamamatsu.com or contact our sales office.

Dimensional outline (unit: mm, tolerance: ±1 mm)

C10900D

- **Fast mode, Fine mode**
- **Partial mode**
- **Panoramic mode**
Rotational radiography

2-1. Radiology

The C10901D series were developed for CT and panoramic imaging. It operates in 3 selectable scan modes to capture X-ray images: "Fast mode" with a pixel size of 200 × 200 μm, and "Fine mode" and "Panoramic mode" with a pixel size of 100 × 100 μm.

Features
- Three selectable scan mode
- High sensitivity
- High-speed frame rate: 265 frames/s (panoramic mode)
- Flat panel structure without image distortion
- Scintillator: direct deposition CsI
- For assembly into equipment: supplied without case

Applications
- Cone beam CT
- Digital radiography, etc.
2. Line-up of Flat Panel Sensors

(Ta=25 °C, Typ. unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C10901D series</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fast mode</td>
</tr>
<tr>
<td>Scan mode</td>
<td></td>
</tr>
<tr>
<td>Pixel size</td>
<td>200</td>
</tr>
<tr>
<td>Photosensitive area</td>
<td>100.8 (H) × 68.2 (V)</td>
</tr>
<tr>
<td>Number of pixels</td>
<td>504 (H) × 341 (V)</td>
</tr>
<tr>
<td>Number of effective pixels</td>
<td>496 (H) × 336 (V)</td>
</tr>
<tr>
<td>Frame rate</td>
<td>60</td>
</tr>
<tr>
<td>Frame rate external</td>
<td>St(int) to 10</td>
</tr>
<tr>
<td>Noise*2</td>
<td>2200</td>
</tr>
<tr>
<td>Sensitivity*3</td>
<td>6000</td>
</tr>
<tr>
<td>Saturation charge</td>
<td>10.5</td>
</tr>
<tr>
<td>Resolution*4</td>
<td>2.5</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>4700</td>
</tr>
<tr>
<td>Defect line*5</td>
<td>8 max.</td>
</tr>
<tr>
<td>X-ray tube voltage</td>
<td>20 to 90</td>
</tr>
<tr>
<td>Digital output (interface)</td>
<td>13</td>
</tr>
<tr>
<td>Scintillator</td>
<td>Direct deposition CsI</td>
</tr>
<tr>
<td>Interface</td>
<td>C10901D</td>
</tr>
</tbody>
</table>

*1: Frame rate for internal mode
*2: Internal trigger mode
*3: At 80 kVp, acrylic filter 170 mm
*4: Spatial frequency at CTF=5%
*5: Adjacent defect lines are not allowed. For the definition of defect line, see Chapter 3, “Description of Terms”.

Note: For detailed data on the products listed in this catalog, see their datasheets that are available from our website www.hamamatsu.com or contact our sales office.

**Dimensional outline (unit: mm, tolerance: ±1 mm) **

C10901D

Fast mode, Fine mode

Panoramic mode
Rotational radiography

2-1. Radiology

The C10500D series were developed for panoramic imaging.
It is rectangular effective area (1480 × 60 pixels), and high speed operation.

<table>
<thead>
<tr>
<th>Features</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>• High sensitivity: 12000 LSB/mR</td>
<td>• Panoramic imaging</td>
</tr>
<tr>
<td>• High-speed frame rate: 300 frames/s</td>
<td>• Digital radiography, etc.</td>
</tr>
<tr>
<td>• Flat panel structure without image distortion</td>
<td></td>
</tr>
<tr>
<td>• Scintillator: direct deposition CsI</td>
<td></td>
</tr>
<tr>
<td>• For assembly into equipment: supplied without case</td>
<td></td>
</tr>
</tbody>
</table>
2. Line-up of Flat Panel Sensors

(Ta=25℃, Typ. unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C10500D-03</th>
<th>C10500D-43</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>100</td>
<td></td>
<td>μm</td>
</tr>
<tr>
<td>Photosensitive area</td>
<td>151.2 (H) × 6.0 (V)</td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Number of pixels</td>
<td>1512 (H) × 60 (V)</td>
<td></td>
<td>pixels</td>
</tr>
<tr>
<td>Number of effective pixels</td>
<td>1480 (H) × 60 (V)</td>
<td></td>
<td>pixels</td>
</tr>
<tr>
<td>Frame rate</td>
<td>300</td>
<td></td>
<td>frames/s</td>
</tr>
<tr>
<td>Frame rate external</td>
<td>S(f(int) to 50</td>
<td></td>
<td>frames/s</td>
</tr>
<tr>
<td>Noise*2</td>
<td>800</td>
<td></td>
<td>electrons</td>
</tr>
<tr>
<td>Sensitivity*3</td>
<td>12000</td>
<td></td>
<td>LSB/mR</td>
</tr>
<tr>
<td>Saturation charge</td>
<td>2.3</td>
<td></td>
<td>M electrons</td>
</tr>
<tr>
<td>Resolution*4</td>
<td>4.5</td>
<td></td>
<td>line pairs/mm</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>2800</td>
<td></td>
<td>lines</td>
</tr>
<tr>
<td>Defect line*5</td>
<td>5 max.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>X-ray tube voltage</td>
<td>20 to 90 kVp</td>
<td></td>
<td>kVp</td>
</tr>
<tr>
<td>Digital output</td>
<td>14</td>
<td></td>
<td>bits</td>
</tr>
<tr>
<td>Scintillator</td>
<td>Direct deposition CsI</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Interface</td>
<td>LVDS</td>
<td>Gigabit Ethernet</td>
<td>-</td>
</tr>
</tbody>
</table>

*1: Frame rate for internal mode
*2: Internal trigger mode
*3: At 80 kVp, acrylic filter 170 mm
*4: Spatial frequency at CTF=5%
*5: Adjacent defect lines are not allowed. For the definition of defect line, see Chapter 3, “Description of Terms”.

Note: For detailed data on the products listed in this catalog, see their datasheets that are available from our website www.hamamatsu.com or contact our sales office.

Dimensional outline (unit: mm, tolerance: ±1 mm)

![Dimensional outline](image-url)
Rotational radiography

2-1. Radiology

The C10502D series were developed for panoramic imaging. It is wide photosensitive area and high speed operation.

<table>
<thead>
<tr>
<th>Features</th>
<th>Applications</th>
</tr>
</thead>
</table>
| • Wide photosensitive area (22 x 0.6 cm) with two-chip tiling
 • High sensitivity: 12000 LSB/mR
 • High-speed frame rate: 300 frames/s
 • Flat panel structure without image distortion
 • Scintillator: direct deposition CsI
 • For assembly into equipment: supplied without case | • Panoramic imaging
 • Digital radiography, etc. |
2. Line-up of Flat Panel Sensors

(Ta=25 °C, Typ. unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C10502D-03</th>
<th>C10502D-43</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>100</td>
<td></td>
<td>μm</td>
</tr>
<tr>
<td>Photosensitive area</td>
<td>226.8 (H) × 6.0 (V)</td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Number of pixels</td>
<td>2268 (H) × 60 (V)</td>
<td></td>
<td>pixels</td>
</tr>
<tr>
<td>Number of effective pixels</td>
<td>2232 (H) × 60 (V)</td>
<td></td>
<td>pixels</td>
</tr>
<tr>
<td>Frame rate</td>
<td>300</td>
<td></td>
<td>frames/s</td>
</tr>
<tr>
<td>Frame rate external</td>
<td>50 to 60</td>
<td></td>
<td>frames/s</td>
</tr>
<tr>
<td>Noise*2</td>
<td>800</td>
<td></td>
<td>electrons</td>
</tr>
<tr>
<td>Sensitivity*3</td>
<td>12000</td>
<td></td>
<td>LSB/mR</td>
</tr>
<tr>
<td>Saturation charge</td>
<td>2.3</td>
<td></td>
<td>M electrons</td>
</tr>
<tr>
<td>Resolution*4</td>
<td>4.5</td>
<td></td>
<td>line pairs/mm</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>2800</td>
<td></td>
<td>lines</td>
</tr>
<tr>
<td>Defect line*5</td>
<td>10 max.</td>
<td></td>
<td>lines</td>
</tr>
<tr>
<td>X-ray tube voltage</td>
<td>20 to 90</td>
<td></td>
<td>kVp</td>
</tr>
<tr>
<td>Digital output</td>
<td>14</td>
<td></td>
<td>bits</td>
</tr>
<tr>
<td>Scintillator</td>
<td>LVDS</td>
<td>Gigabit Ethernet</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1: Frame rate for internal mode
*2: Internal trigger mode
*3: At 80 kVp, acrylic filter 170 mm
*4: Spatial frequency at CTF=5%
*5: Adjacent defect lines are not allowed. For the definition of defect line, see Chapter 3, “Description of Terms”.

Note: For detailed data on the products listed in this catalog, see their datasheets that are available from our website www.hamamatsu.com or contact our sales office.

Dimensional outline (unit: mm, tolerance: ±1 mm)

![Dimensional outline diagram](image-url)
Biochemistry

2-1. Radiology

The biochemical application series C9730DK-10 and C9732DK-11 have fine 50 μm pixel pitch and directly deposited CsI scintillator onto a large formatted photodiode array optimized to 17 keV radiation. They have a cassette shape with a carbon fiber top cover. C7942CK-22 installs CsI flipped scintillator plate (FSP) which is optimized for low absorption material radiography of less than 80 kVp energy range.

Features
- High resolution
- No dead area (insensitive area) due to seamless structure
- Scintillator: CsI flipped scintillator plate (C7942CK-22)
 - direct deposition CsI (C9730DK-10, C9732DK-11)
- Top cover material: carbon fiber

Applications
- Soft X-ray radiography
- X-ray imaging, etc.
 - (C9730DK-10, C9732DK-11: optimized to 17 keV)
2. Line-up of Flat Panel Sensors

(Ta=25 °C, Typ. unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C7942CK-22</th>
<th>C9730DK-10</th>
<th>C9732DK-11</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>μm</td>
</tr>
<tr>
<td>Photosensitive area</td>
<td>120 (H) × 120 (V)</td>
<td>52.8 (H) × 52.8 (V)</td>
<td>120 (H) × 120 (V)</td>
<td>mm</td>
</tr>
<tr>
<td>Number of pixels</td>
<td>2400 (H) × 2400 (V)</td>
<td>1056 (H) × 1056 (V)</td>
<td>2400 (H) × 2400 (V)</td>
<td>pixels</td>
</tr>
<tr>
<td>Number of effective pixels</td>
<td>2240 (H) × 2344 (V)</td>
<td>1032 (H) × 1032 (V)</td>
<td>2368 (H) × 2340 (V)</td>
<td>pixels</td>
</tr>
<tr>
<td>Frame rate (single operation)</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>frames/s</td>
</tr>
<tr>
<td>Frame rate (2 × 2 binning)</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>frames/s</td>
</tr>
<tr>
<td>Frame rate (4 × 4 binning)</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>frames/s</td>
</tr>
<tr>
<td>Frame rate external (single operation)</td>
<td>Sf (int)<sup>1</sup> to 0.1</td>
<td>Sf (int)<sup>1</sup> to 0.5</td>
<td>Sf (int)<sup>1</sup> to 0.5</td>
<td>electrons</td>
</tr>
<tr>
<td>Noise<sup>2</sup></td>
<td>1100</td>
<td>1250</td>
<td>1250</td>
<td>electrons</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>35<sup>3</sup></td>
<td>65<sup>4</sup></td>
<td>65<sup>4</sup></td>
<td>LSB/mR</td>
</tr>
<tr>
<td>Saturation charge</td>
<td>2.2</td>
<td>6.4</td>
<td>6.4</td>
<td>M electrons</td>
</tr>
<tr>
<td>Resolution<sup>5</sup></td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>line pairs/mm</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>2000</td>
<td>5100</td>
<td>5100</td>
<td>-</td>
</tr>
<tr>
<td>Defect line</td>
<td>20 max.<sup>6</sup></td>
<td>10 max.<sup>6</sup></td>
<td>16 max.<sup>7</sup></td>
<td>lines</td>
</tr>
<tr>
<td>X-ray tube voltage</td>
<td>20 kVp to 80 kVp</td>
<td>Less than 35 kVp (17 keV Mo source)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Digital output</td>
<td>12</td>
<td>14</td>
<td>-</td>
<td>bits</td>
</tr>
<tr>
<td>Scintillator</td>
<td>CsI flipped scintillator plate</td>
<td>Direct deposition CsI</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>RS-422 differential</td>
<td>USB 2.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Top cover material (thickness)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Suitable frame grabber cable</td>
<td>A8406-5<sup>*</sup> series</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

¹: Frame rate for internal mode
²: Internal trigger mode and single operation
³: At 80 kVp, without filter
⁴: At Mo target 30 kVp, without filter
⁵: Spatial frequency at CTF=5%
⁶: Adjacent defect lines are not allowed. For the definition of defect line, see Chapter 3, “Description of Terms”.
⁷: Only one pair of adjacent defect lines is allowed. For the definition of defect lines, see Chapter 3, “Description of Terms”.

Note: For detailed data on the products listed in this catalog, see their datasheets that are available from our website www.hamamatsu.com or contact our sales office.

Dimensional outline (unit: mm, tolerance: ±1 mm)

<table>
<thead>
<tr>
<th>C7942CK-22</th>
<th>C9730DK-10</th>
<th>C9732DK-11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: For detailed data on the products listed in this catalog, see their datasheets that are available from our website www.hamamatsu.com or contact our sales office.

Note: For detailed data on the products listed in this catalog, see their datasheets that are available from our website www.hamamatsu.com or contact our sales office.
These flat panel sensors feature a low noise and direct deposition CsI scintillator for applications where diffraction is critical.

Features
- Active pixel sensor
- Low noise: 80 electrons (C9728DK-10)
- High quality image
- With USB 2.0 interface (C9728DK-10)
- Scintillator: direct deposition CsI
- Top cover material: carbon fiber
- Partial scan and whole scan selectable (C10158DK)

Applications
- Diffraction
- Radiography, etc.
2. Line-up of Flat Panel Sensors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C9728DK-10</th>
<th>C10158DK</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>50</td>
<td>50</td>
<td>μm</td>
</tr>
<tr>
<td>Photosensitive area</td>
<td>52.8 (H) × 52.8 (V)</td>
<td>118.8 (H) × 118.8 (V)</td>
<td>mm</td>
</tr>
<tr>
<td>Number of pixels</td>
<td>1056 (H) × 1056 (V)</td>
<td>2376 (H) × 2376 (V)</td>
<td>pixels</td>
</tr>
<tr>
<td>Number of effective pixels</td>
<td>1032 (H) × 1032 (V)</td>
<td>Whole scan 2352 (H) × 2352 (V)</td>
<td>pixels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partial scan 2352 (H) × 528 (V)</td>
<td>pixels</td>
</tr>
<tr>
<td>Frame rate</td>
<td>3</td>
<td>Whole scan 3</td>
<td>frames/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partial scan 12</td>
<td>frames/s</td>
</tr>
<tr>
<td>Frame rate external</td>
<td>Sf (int)(^1) to 0.1</td>
<td>Sf (int)(^1) to 1.0</td>
<td>frames/s</td>
</tr>
<tr>
<td>Noise(^2)</td>
<td>80</td>
<td>180</td>
<td>electrons</td>
</tr>
<tr>
<td>Sensitivity(^3)</td>
<td>450</td>
<td>220</td>
<td>LSB/mR</td>
</tr>
<tr>
<td>Saturation charge</td>
<td>0.45</td>
<td>1.1</td>
<td>M electrons</td>
</tr>
<tr>
<td>Resolution(^4)</td>
<td>10</td>
<td>10</td>
<td>line pairs/mm</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>5600</td>
<td>6000</td>
<td>-</td>
</tr>
<tr>
<td>Defect line(^5)</td>
<td>10 max.</td>
<td>30 max.</td>
<td>lines</td>
</tr>
<tr>
<td>Adjacent defect line</td>
<td>0 max.</td>
<td>2 max.</td>
<td>lines</td>
</tr>
<tr>
<td>X-ray energy range</td>
<td>18 max.</td>
<td>18 max.</td>
<td>keV</td>
</tr>
<tr>
<td>Digital output</td>
<td>14</td>
<td>14</td>
<td>bits</td>
</tr>
<tr>
<td>Scintillator</td>
<td>Direct deposition CsI</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Interface</td>
<td>USB 2.0</td>
<td>LVDS</td>
<td>-</td>
</tr>
<tr>
<td>Top cover material (thickness)</td>
<td>Carbon fiber (1.0 mm)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Suitable frame grabber cable</td>
<td>-</td>
<td>A8406-5(^*) series</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^1\): Frame rate for internal mode
\(^2\): Internal trigger mode
\(^3\): At Mo target 25 kVp, without filter
\(^4\): Spatial frequency at CTF=5%
\(^5\): For the definition of defect line, see Chapter 3, “Description of Terms”.

Note: For detailed data on the products listed in this catalog, see their datasheets that are available from our website www.hamamatsu.com or contact our sales office.

Dimensional outlines (unit: mm, tolerance: ±1 mm)

![Dimensional outline of C9728DK-10](image1)

![Dimensional outline of C10158DK](image2)
3. Description of Terms

Effective pixels
Pixels in the active area used for imaging excluding the shielded portion surrounding the photosensitive area.

Binning mode
Binning mode is a method for taking images as superpixels that are the sum of several pixels, for example, 2×2 or 4×4 pixels. See 4-2 for details.

Defect line
A defect line is a horizontal or vertical line containing 4 or more consecutive pixels located at the opposite side of an amplifier array or a shift register, that produce $1/8^\circ$ of the sensitivity average of the surrounding pixels.

Note: Generally, the opposite side of an amplifier array and a shift register array corresponds to the 1st row and 1st column of the image data. On two-port devices, the image data format is different so refer to the individual datasheet.

* The definition for some products differs from this value. Please consult the individual datasheets.

Dynamic range
The ratio of saturation charge to noise.

Fill factor
The ratio of effective photosensitive area (no-shielded area) to total pixel area.
A larger fill factor can reduce light detection loss.

Frame rate
The vertical sync (Vsync) frequency determines the frame rate. In internal trigger mode, video and sync signals always flow from the flat panel sensor at the highest frame rate. External trigger mode can drive the flat panel sensor at a lower frame rate. See 4-2 for details.

Note: The actual frame rate in individual software depends on the CPU processing performance as well as the display board or software load. The software might skip a few frames if the processing performance is lower than system requirements.

Noise
The rms noise swing width in units of electrons, measured at 25° C in internal trigger mode and single operation.

Photosensitive area
Area on the chip where a photodiode array is formed.

Resolution
Spatial frequency at CTF=5 %, expressed in LP/mm (LP: line pairs). Resolution is measured using a 60 kV microfocus X-ray source.

Saturation charge
The maximum output bit in units of electrons.

Scintillator
A material that emits a small flash of light (or scintillation) when struck by nuclear particles or radiation. HAMAMATSU offers various scintillators to cover a wide energy range of incident X-rays.

Sensitivity
Output bit per 1 mR irradiation, expressed in units of LSB/mR (LSB: least significant bit). The full scale of a 12-bit video output is 4095 LSB, 8191 LSB for 13-bit type and 16383 LSB for the 14-bit type. See tube voltages or filter conditions described in each data sheet.

X-ray tube voltage
The voltage applied across the anode and cathode of an X-ray tube to accelerate electrons emitted from the cathode filament in order to hit the X-ray tube target. When a voltage V_p is applied to the X-ray tube, X-rays are generated at an energy corresponding to V_p eV. The X-ray tube voltage range guaranteed for flat panel sensors will differ depending on the sensor type.
4. Operating Principle and Structure

4-1. Features
Flat panel sensor is a lightweight and compact X-ray imaging sensor module consisting of a sensor board and a control board. The sensor board has plural blocks of charge-sensitive amplifier arrays with CDS (Correlated Double Sampling) circuit and horizontal shift register. Amplified analog video signals sequentially flow from each block and transferred to the control board. The analog signal is converted into a digital signal and outputs to an external frame grabber through the parallel port.

4-2. Operating principle
The CMOS flat panel sensor chip consists of large formatted photodiode matrix, low noise charge integration amplifier and vertical shift register.

A trans-impedance amplifier with a feedback capacitor converts photocurrent into an output voltage proportional to the input photon intensity. The output voltage of charge integration amplifier is proportional to the product of the photon intensity and integration time. The long integration time allows detecting extremely faint radiation even with a tiny pixel size. The integration time in internal mode is specified in each data sheets. The integration time in external mode is determined by interval of the rising edges of a couple of successive external trigger pulses.

The flat panel sensor cannot detect a change of radiation within the integration time. The vertical shift pulse is applied to every row of photodiode matrix sequentially. The start timing of the integration time of each row has a time lag that is equal to the cycle time of a horizontal synchronus pulse.

The capacitor of each photodiode element has limited value, so the integration charge is also limited. This is defined as the saturation charge in the data sheet. The linear output cannot be obtained if over radiation dose corresponds to the value is irradiated.

Each vertical shift register pulse, charge amplifier drive pulse, horizontal shift register pulse, A/D converters and memory chip drive pulse are generated from associated electronic circuits within the sensor case. The user does not have to design and build an intricate timing generator but needs only connect it to a digital grabber card to acquire an X-ray image.

The integration time is the reciprocal of the frame rate. The frame rate specified in internal mode is the maximum speed. It corresponds to the shortest integration time. The longer integration time is attained in external trigger mode, which supplies a longer cycle of external trigger pulse to the flat panel sensor.

Figure 5: Example for block diagram

Figure 6: Timing chart
In the flat panel sensor drive sequence, the high-sensitivity photodiode matrix generates carriers and accumulates them in the junction capacitance of each pixel when they receive scintillation light from the scintillator material. All pixels have an overflow drain to protect against blooming in adjacent pixels even when a portion of the pixels is saturated. The standard CMOS process implemented with a photodiode matrix achieves a high fill factor ratio of 75 to 78% for 50 × 50 μm pixels and 88 to 89% for 100 μm pixels. (See Figure 7.)

Shift pulses are supplied by the vertical shift register for sequential scanning and a row of photodiodes flows the carrier into each data lines. The on-chip extremely-low noise charge amplifier array with CDS circuit is somewhat complicated in terms of structure and operation, however it can cancel out the offset components by finding the signal difference between the accumulated charge and zero level. This makes a huge improvement in image output uniformity. Usually, some kinds of corrections are made to an acquired image before it is displayed, but the flat panel sensor was designed to have a high level of image quality even before making those corrections. The output noise is mainly determined by the charge amplifier itself and the data line capacitance. The ENC (total Equivalent Noise Charge) is given by the following equation.

\[
\text{ENC} = \frac{8KT}{3gm} \times (Ct)^2 \quad (1)
\]

\[
Ct = C_d + C_p + C_f \quad (2)
\]

- **K**: Boltzman constant \(1.3806 \times 10^{-23}\)
- **T**: Absolute temperature [K]
- **gm**: Transconductance [S]
- **Cd**: Junction capacitance of photodiode [F]
- **Cp**: Data line capacitance [F]
- **Cf**: Feedback capacitance of the charge amplifier [F]

Binning mode

The flat panel sensor can deliver high-resolution images in the single pixel drive mode. On the other hand, some types of the flat panel sensors have a binning drive mode for high-speed and high-sensitivity operation. A user can select 2 × 2 or 4 × 4 binning mode. In the 2 × 2 binning mode, the neighboring 2 × 2 pixels are read out together. In the 4 × 4 binning mode, the neighboring 4 × 4 pixels are read out together. So the user can drive the module with higher frame rate controlling the binning mode. Moreover when it is driven at the same frame rate, the amount of signals becomes 4 times larger by 2 × 2 binning mode and 16 times by 4 × 4 binning mode.

Trigger mode (LVDS interface type)

The flat panel sensors have two trigger modes (internal/external trigger mode). Under the internal trigger mode, video signal and synchronous signals always flow out from the flat panel sensor at the highest frame speed of Sf (int), which is described in the electrical specification in its data sheets. On the other hand, the user can choose the external trigger mode to synchronize the flat panel sensor with the X-ray source or to expand the accumulation period to make the sensitivity higher. The period of this external trigger signal is equal to that of the integration time. The sensor starts to forward the video data to the frame grabber board at the rising edge of this signal. The duty of this trigger signal should be settled between 1% and 99% (50% is recommended). The voltage of this signal should be compatible with TTL-level.

When the user selects internal trigger mode, the signal of “IntExt” or “IntExtGrb” should be set to Low. If “IntExt” and “IntExtGrb” are set to High, the flat panel sensor works as the external trigger mode.

In case of the external trigger mode, there are two methods to control integration period. One is supplying the synchronous signal through “ExtTrgGrb” from PC. The other is supplying the synchronous signal through “ExtTrgLemo” or “ExtTrgIO” from X-ray source. Please refer to the data sheet for the flat panel sensor.

Under the external trigger mode, the first image, which follows the first external trigger signal, is bright and useless because the integration time is not defined. It means that charge from dark current continuously accumulated until the trigger pulse is supplied. Therefore, the second image or later ones are valid.
4-3. Active pixel construction

HAMAMATSU CMOS flat panel sensors adopt two kinds of amplifier circuit constructions; one is passive pixel type for ordinary application, and the other is active pixel type for high-end use. The passive pixel type incorporates amplifier arrays existing at one side of photodiode array and each amplifier is connected to one column of photodiode array via address switches. This simple structure allows high fill factor, high productivity and high radiation tolerance although there is limitation to reduce thermal noise of amplifier dramatically due to its large input capacitance caused by long data line. The active pixel type solves the drawback of the passive pixel type. Its low noise or high S/N feature is appealing on low energy or low exposure application like an high quality imaging of low contrast objects or usage of an open-type microfocus X-ray source. This type has an amplifier built in each pixel, and accumulated charges are converted into voltage. The noise level is less than 180 electrons rms, which is less than 1/6 of the passive pixel type.

4-4. Coupling method of scintillator

HAMAMATSU flat panel sensor utilizes a needle structure CsI as an X-ray conversion layer. There are three methods for coupling a scintillator structure with a CMOS device. The first one is direct deposition of CsI onto the photodiode matrix, the second one is a CsI flipped scintillator plate (FSP). Both of these approaches utilize the needle structure CsI scintillator. A combination of CsI scintillator and CMOS large formatted photodiode array is essential for high-resolution devices, and the direct deposition CsI flat panel sensor in particular shows outstanding resolution. On the other hand, the FSP offers the advantage of relatively low cost. Another scintillator component is GOS-deposited FOP. It can be used higher tube voltages application.

Figure 8: Internal circuit of CMOS chip

Passive pixel type

Active pixel type

Figure 9: Cross sectional figure of indirect and direct conversion devices

CsI direct deposition type

CsI flipped scintillator plate (FSP) type

GOS-deposited FOP type
4-5. Scintillator

Achieving a spectral response characteristic that matches the peak wavelength and spectral range of the scintillator emission is a critical factor in photodiode matrix design. By controlling the impurity profile and passivation, HAMAMATSU has succeeded in developing an optimal high-sensitivity X-ray device ideal for indirect X-ray detection.

The second to the last letter of each product type number (e.g., C7942CK-22) indicates which type of scintillator is used. Type C utilizes a cost-effective and high-resolution scintillator plate. Type D is a direct deposition type flat panel sensor that realizes high resolution and high sensitivity. Type S has GOS deposited X-ray shielded fiber optics plate against higher tube voltage.

| C: CsI:Tl (CSI Flipped Scintillator Plate (FSP)), D: CsI:Tl (Directly deposited on photodiode array) | S: GOS (GOS is deposited onto an X-ray shielded FOP) |

Figure 10: Scintillation spectrum of CsI and photo sensitivity of a pixel
Figure 11: The needle-like crystal structure of CsI

4-6. Window material of top cover

The last letter of each product number (e.g., C7942CK-22) indicates which type of window is used.

A: Aluminum (1 mmt), K: Carbon fiber (1 mmt)

The top cover protects the device against physical damage, extends the service life of the CsI and photodiode array, and acts as a filter for the scattered soft X-rays.

The aluminum top cover is adequate for radiation of the X-ray tube voltage up to 100 kVp. The carbon fiber top cover, on the other hand, has high transmittance (more permeable to X-rays) and is the right option for detecting lower energy X-ray of less than 80 kVp.

The carbon fiber is also applied for the flat panel sensor on which X-ray shielded FOP is mounted.

4-7. X-ray radiation damage

The flat panel sensor shows the degradation of characteristics by X-ray irradiation. In general, X-ray sensitivity decreases because of the browning of scintillator and the dark output increases by the radiation damage of the photodiode. In some cases, partial dark output increase is also observed. In the case of “CA” type sensor, for example, sensitivity decrease around 25% and the dark output increase of around 200 LSB/frame at internal frame rate are observed after the exposure of 1 million Roentgen at the tube voltage of 100 kVp. “SK” type is relatively tolerant against X-ray than the “CA” type because of the high absorption efficiency of X-ray shielded FOP. The guaranteed total radiation dose of the “CA” type sensor, for example, is 1 million Roentgen at 100 kVp. In case of 8-hour operation in a day, it is equivalent to 76 days on the condition that the 80 kVp continuous X-ray is exposed to the detector as the intensity of 4096 LSB output can be taken at 2 frames per second and the minimum sensitivity is 20 LSB/mR.

For detailed information and data on the products listed in this catalogue, see the datasheets.
5. Features

5-1. Spatial resolution

The flat panel sensor spatial resolution is determined by the frequency function of photodiode array and the applied scintillator layer. The contrast transfer function (CTF) curve is an index of the total resolution of the flat panel sensor (See Figure 12). It appears from 0 line pair/mm to the Nyquist frequency (Fn). The frequency is defined by the pixel pitch.

\[
Fn = \frac{1}{2 \times d} \quad \text{(3)}
\]

d: Pixel pitch [mm]

$$\text{d: Pixel pitch [mm]}$$

Figure 12: Resolution

5-2. Dynamic range

An advanced design is essential for attaining a wide dynamic range with the 12-bit A/D converter which provides 4096 levels of gray or the 14-bit A/D converter which provides 16384 levels of gray. The value of dynamic range shown in each sensor type specification corresponds to the maximum bit depth of each type. Amplifier noise is minimized by lowering noise voltages in initial stage of the amplifiers. A wide dynamic range is obtained by keeping the swing width of the amplifier within the range of the 5 V supply used in the standard CMOS process and by optimizing the saturation voltage for the photodiode array. However, improving the gain in the initial stage of amplifier for the tiny pixels requires reducing the charge amplifier feedback capacitance (Cf). The capacitance of a column gate switch drain is also added on the data line capacitance, along a large active area making up large input capacitance (Ci).

X-ray image sensors usually require large effective photosensitive area. This causes the Ct value to increase significantly so that a large format active area and very fine pixels are drawbacks in terms of noise. However, by optimizing the transconductance (gm) of the initial amplifier stage, and using patterning that miniaturizes the data lines and reduces stray capacitance, a 100 μm type flat panel sensor was developed having a wide dynamic ranges of 4300 as shown above.

5-3. Detective quantum efficiency

Detective Quantum Efficiency (DQE) is one of the physical parameters used for the evaluation of image quality and it was derived from the idea of S/N. The DQE is defined as shown in equation (4).

\[
\text{DQE} = \frac{(S / N_{out})^2}{(S / N_{in})^2} \quad \text{(4)}
\]

Generally a detector is never ideal because the information fed into the detector is degraded due to the incomplete absorption efficiency, noise and contrast loss in the detection system. The DQE analysis is important to determine the effectiveness of the imaging system. The DQE essentially involves the conversion gain of the system, resolution characteristics (MTF: Modulation Transfer Function) and noise characteristics (NPS: Noise Power Spectrum). Since the MTF and NPS are the function of the spatial frequency, DQE is also represented as a function of the spatial frequency. The DQE(f) is calculated by the equation below,

\[
\text{DQE}(f) = G^2 \cdot q \cdot \text{MTF}(f)^2 / \text{NPS}(f) \quad \text{(5)}
\]

where G is a constant which is defined as the average conversion gain [mV/quantum] of the system, q is the number of X-ray quanta incident per pixel upon the detector during one acquisition period, MTF(f) is the Modulation Transfer Function which is another representation of the spatial resolution obtained from the Line Spread Function (LSF) by applying the Fourier transform method, and NPS(f) is the noise power spectrum obtained from the image data by applying the Fourier transform method.
6. System Set-up

6-1. Set-up example (LVDS interface type)

Connect the flat panel sensor to the grabber board that was installed in a PC according to the manufacturer’s instructions. A highly flexible grabber board can control binning bit, IntExt, ExtTrg as binning or triggers operation through its digital I/O lines. A power cable* which is terminated with the applicable plug at one end and open at another end is shipped as an accessory with the flat panel sensor.

* Power cable is not supplied with some products. Please refer to the individual datasheets.

6-2. Precaution for power source configuration

In case of using a power source that has large ripple noise, horizontal line noise may appear in an image. A power source whose ripple noise is less than 1 mVp-p should be used.

For the high quality image acquisition, analog +5 V and digital +5 V sources should be separated, because all power source ground are connected to the frame grounds at the flat panel sensor side, they should be disconnected from the frame ground or another power source ground at the power source side (refer to Figure 15).

The voltages described above are specified at the flat panel sensor side. The impedance of the power cable attached with the flat panel sensor is low enough, but it causes 0.1 V drop. Therefore the voltage at the power source side should be set 0.1 V higher than the voltage specified above. Avoid to extend the power cable because it causes voltage drop.

An AC line filter should be placed at the AC input line in the power source to prevent the surge from the AC line. A power source with CE mark is recommended.

6-3. Frame grabber cables

HAMAMATSU provides the A8406 series as frame grabber board cables. The A8406 series is available in several types with different cable lengths and terminations. Check the cable specifications that meet your needs. For detailed information, refer to the A8406 series datasheet.

Power supply unit

Please consult with our sales office.
7. Image Samples

Dog paw

Taken with radiology type flat panel sensor
- Photosensitive area: 124.8 x 124.8 mm
- Scintillator: direct deposition CsI
- Frame rate: 0.5 frames/s

X-ray source: HAMAMATSU Microfocus X-ray source (130 kV)
(Focus size: 40 μm, window Be: 200 μm) 50 kV, 300 μA
Hornet
Taken with non-destructive inspection type flat panel sensor
Photosensitive area: 52.8 × 52.8 mm
Scintillator: CsI flipped scintillator plate
Frame rate: 0.35 frames/s
X-ray source: RIGAKU 150CPT
(Focus size: 300 μm, window Be: 1 mm) 35 kV, 1.7 mA
Fish
Taken with radiology type flat panel sensor
Photosensitive area: 120 × 120 mm
Scintillator: direct deposition CsI
Frame rate: 0.1 frames/s
X-ray source: HAMAMATSU Microfocus X-ray source (130 kV)
(Focus size: 10 μm, window Be: 200 μm) 35 kV, 200 μA
Chicken wing

Taken with radiology type flat panel sensor
Photosensitive area: 124.8 x 124.8 mm
Scintillator: direct deposition CsI
Frame rate: 0.1 frames/s
X-ray source: HAMAMATSU Microfocus X-ray source (130 kV)
(Focus size: 10 µm, window Be: 200 µm) 30 kV, 150 µA
Leaf
Taken with radiology type flat panel sensor
Photosensitive area: 120 × 120 mm
Scintillator: direct deposition CsI
Frame rate: 0.1 frames/s
X-ray source: HAMAMATSU Microfocus X-ray source (130 kV)
(Focus size: 10 μm, window Be: 200 μm) 30 kV, 150 μA
HAMAMATSU has a full line of X-ray sources and cameras for X-ray inspection of electronic components, industrial products as well as for a wide range of fields to meet needs in food processing and security, etc. For detailed information and PDF catalogs on these products, please access our homepage at www.hamamatsu.com
Notice

- Copies of the full warranty can be obtained prior to the purchase of products by contacting your local Hamamatsu sales office.
- Hamamatsu makes no other warranties, and any and all implied warranties of merchantability, or fitness for a particular purpose, are hereby disclaimed. The customer is responsible for use of the product in accordance with Hamamatsu's instructions and within the operating specifications and ratings listed in this catalogue. Hamamatsu shall not be responsible for the customer's improper selection of a product for a particular application or otherwise. No warranty will apply if the products are in any way altered or modified after delivery by Hamamatsu or for any intentional misuse or abuse of the products. Proper design safety rules should be followed when incorporating these products into devices that could potentially cause bodily injury.
- Hamamatsu's liability on any claim for loss or damage arising out of the supplying of any products, whether based on contract, warranty, tort (including negligence and for property damage or death and bodily injury) or other grounds, shall not in any event exceed the price allocable to such products or a part thereof involved in the claim, regardless of cause or fault. In no event shall Hamamatsu be responsible to the customer or any third party for any consequential, incidental or indirect damages, including but not limited to loss of profits, revenues, sales, data, business, goodwill or use, even if the company has been advised of the possibility of such loss or damage. The limitation of liability set forth herein applies both to products and services purchased or otherwise provided hereunder. This warranty is limited to repair or replacement, at the sole option of Hamamatsu, of any product which is defective in workmanship or materials used in manufacture. All warranty claims must be made within 1 year from the date of purchase or provision of the products or services.
- Products that are amenable to repair shall be done so either under warranty or pursuant to a separate repair agreement. Some products cannot be repaired either because of the nature or age of the product, the unavailability of spare parts, or the extent of the damage is too great. Please contact your local Hamamatsu office for more details.
- The products described in this catalogue should be used by persons who are accustomed to the properties of photoelectronics devices, and have expertise in handling and operating them. They should not be used by persons who are not experienced or trained in the necessary precautions surrounding their use.
- The information in this catalogue is subject to change without prior notice.
- Information furnished by Hamamatsu is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.
- No patent rights are granted to any of the circuits described herein.
HAMAMATSU PHOTONICS K.K., Solid State Division
1126-1, Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558, Japan
Telephone: (81)53-434-3311, Fax: (81)53-434-5184
www.hamamatsu.com

Main Products
Si photodiodes
APD
Photo IC
Image sensors
X-ray flat panel sensors
PSD
Infrared detectors
LED
Optical communication devices
Automotive devices
Mini-spectrometers
High energy particle/X-ray detectors
Opto-semiconductor modules

Hamamatsu also supplies:
Photoelectric tubes
Imaging tubes
Light sources
Imaging and processing systems

Sales Offices

JAPAN:
HAMAMATSU PHOTONICS K.K.
325-6, Sunayama-cho, Naka-ku
Hamamatsu City, 430-8567, Japan
Telephone: (81)53-452-2146, Fax: (81)53-456-7889

China:
HAMAMATSU PHOTONICS (CHINA) Co., Ltd.
B1201 Jaming Center, No.27 Dongsanhuian Bellu,
Chaoyang District, Beijing 100020, China
Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866
E-mail: hpc@hamamatsu.com.cn

U.S.A:
HAMAMATSU CORPORATION
Main Office
360 Foothill Road,
Bridgewater, N.J. 08807-0910, U.S.A.
Telephone: (1)908-231-0960, Fax: (1)908-231-1218
E-mail: usa@hamamatsu.com

Western Sales Office:
Suite 2003, Suite 110, 2875 Moorpark Ave.
San Jose, CA 95128, U.S.A.
Telephone: (1)408-261-2022, Fax: (1)408-261-2522
E-mail: sales@hamamatsu.com

United Kingdom, South Africa:
HAMAMATSU PHOTONICS UK LIMITED
Main Office
2 Howard Court, 10 Tewin Road, Welwyn Garden City,
Hertfordshire AL7 1BW, United Kingdom
Telephone: (44)1707-294888, Fax: (44)1707-325777
E-mail: info@hamamatsu.co.uk

South Africa office:
PO Box 1112
Buccheuck 2066
Johannesburg, South Africa
Telephone/Fax: (27)11-802-5505

France, Portugal, Belgium, Switzerland, Spain:
HAMAMATSU PHOTONICS FRANCE S.A.R.L.
Main Office:
19, Rue du Saule Trapu, Parc du Moulin de Massy,
91882 Massy Cedex, France
Telephone: (33)1 69 53 71 00
Fax: (33)1 69 53 71 10
E-mail: info@hamamatsu.fr

Swiss Office:
Dornacherplatz 7
4500 Solothurn, Switzerland
Telephone: (41)32 625 60 00,
Fax: (41)32 625 60 61
E-mail: swiss@hamamatsu.ch

Belgian Office:
Aixiscarp Technology, rue Andre Dumont 7-1435
Mont-Saint-Guibert, Belgium
Telephone: (32)10 45 63 34
Fax: (32)10 45 63 67
E-mail: info@hamamatsu.be

Spanish Office:
C. Argenters, 4 edif 2
Parque Tecnologico del Vallés
08290 Certanyola (Barcelona), Spain
Telephone: (34)93 582 44 30
Fax: (34)93 582 44 31
E-mail: info@hamamatsu.es

Germany, Denmark, Netherlands, Poland:
HAMAMATSU PHOTONICS DEUTSCHLAND GmbH
Main office:
Arzbergerstr. 10,
D-82211 Herrsching am Ammersee, Germany
Telephone: (49)8152-375-0, Fax: (49)8152-265-8
E-mail: info@hamamatsu.de

Danish Office:
Lautrupgaard 1-3
DK-2750 Ballerup, Denmark
Telephone: (45)70 20 93 89, Fax: (45)44 20 99 10
E-mail: info@hamamatsu.dk

Netherlands Office:
Televiesweg 2
NL-1322 AC Almere, The Netherlands
Telephone: (31)36-5045884, Fax: (31)36-5244294
E-mail: info@hamamatsu.nl

Poland Office:
02-525 Warsaw,
8 St. A. Boboli Str., Poland
Telephone: (48)22-646-0016, Fax: (48)22-646-0018
E-mail: poland@hamamatsu.de

North Europe and CIS:
HAMAMATSU PHOTONICS NORDEN AB
Main Office:
Torshamnsgatan 35, 16440 Kista, Sweden
Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01
E-mail: info@hamamatsu.se

Russian Office:
11, Chistoprudny Boulevard, Building 1,
101000, Moscow, Russia
Telephone: (7) 495 258 85 18, (7) 495 258 85 19
E-mail: info@hamamatsu.ru

Italy:
HAMAMATSU PHOTONICS ITALIA S.r.l.
Main office:
Strada della Moia, 1 int. 6
20020 Arse (Milano), Italy
Telephone: (39)02-93581733
Fax: (39)02-93581741
E-mail: info@hamamatsu.it

Rome Office:
Viale Cesare Pavese, 435
00144 Roma, Italy
Telephone: (39)06-50513454, Fax: (39)06-50513460
E-mail: informa@hamamatsu.it

Taiwan:
HAKUTO TAIWAN LTD.
6F, No.308, Pa leh Road, Sec. 2, Taipei, Taiwan, R.O.C.
Telephone: (886)2-2874-8910
Fax: (886)2-2874-8918

KORYO ELECTRONICS CO., LTD.
9F, No.7, No.79, Hsin Tai Wu Road
Sec.1, Hsi-Chih, Taipei, Taiwan, R.O.C.
Telephone: (886)2-2698-1143, Fax: (886)2-2698-1147

Republic of Korea:
SANGKI CORPORATION
Suite 431, World Vision BLDG.
24-2 Yoido-Dong
Youngdeungpo-Gu
Seoul, 150-377
Telephone: (82)2-780-8515
Fax: (82)2-784-6062

Singapore:
HAKUTO SINGAPORE PTE LTD.
Block 2, Kaki Bukit Avenue 1, #04-01 to #04-04
Kaki Bukit Industrial Estate, Singapore 417938
Telephone: (65)67458910, Fax: (65)67418200

Information in this catalogue is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein.

© 2014 Hamamatsu Photonics K.K.

Quality, technology, and service are part of every product.