

CCD area image sensors

S7033/S7034 series

Back-thinned FFT-CCD

The S7033/S7034 series are families of FFT-CCD image sensors specifically designed for low-light-level detection in scientific applications. The S7033/S7034 series feature large full-well capacity in horizontal CCD register. By using the binning operation, the S7033/S7034 series can be used as a linear image sensor having a long height. This makes the S7033/S7034 series suited for use in spectrophotometry. The binning operation offers significant improvement in S/N and signal processing speed compared with conventional methods by which signals are digitally added by an external circuit.

The S7033/S7034 series have an effective pixel size of $24 \times 24 \,\mu\text{m}$ and are available in image areas ranging from 12.288 (H) \times 2.928 (V) mm² (S7033-0907, S7034-0907S) up to a large image area of 24.576 (H) \times 2.928 (V) mm² (S7033-1007, S7034-1007S).

Either one-stage or two-stage thermoelectric cooler is built into the package (\$7034/\$7035 series). At room temperature operation, the device can be cooled down to -10 °C by one-stage cooler and -30 °C by two-stage cooler respectively without using any other cooling technique. In addition since both the CCD chip and the thermoelectric cooler are hermetically sealed, no dry air is required, thus allowing easy handling.

Features

- Line, pixel binning
- ➡ Greater than 90 % quantum efficiency at peak sensitivity wavelength
- Wide spectral range
- **■** Wide dynamic range
- **■** MPP operation
- **■** Built-in thermoelectric cooler (S7034/S7035 series)

- Applications

- **➡** Fluorescence spectrometer, ICP
- Industrial inspection requiring
- Semiconductor inspection
- DNA sequencer
- Low-light-level detection

Selection guide

Type No.	Cooling	Number of total pixels	Number of active pixels	Active area [mm (H) × mm (V)]
S7033-0907	Non-cooled	532 × 128	512 × 122	12.288 × 2.928
S7033-1007	Noi1-cooled	1044 × 128	1024 × 122	24.576 × 2.928
S7034-0907S	One-stage	532 × 128	512 × 122	12.288 × 2.928
S7034-1007S	TE-cooled	1044 × 128	1024 × 122	24.576 × 2.928

Note: Two-stage TE-cooled type (S7035 series) is also available.

General ratings

Parameter	S7033 series	S7034 series				
Pixel size	24 (H) × 24 (V) μm					
Vertical clock phase	2 pt	nase				
Horizontal clock phase	2 phase					
Output circuit	One-stage MOSFET source follower					
Package	24 pin ceramic DIP (refer	to dimensional outlines)				
Built-in cooler	-	One-stage				
Window *1	Quartz glass	AR-coated sapphire				

^{*1:} Temporary window type (e.g. S7033-0907N) is available upon request.

→ Absolute maximum ratings (Ta=25 °C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating temperature *2	Topr	-50	-	+50	°C
Storage temperature	Tstg	-50	-	+70	°C
OD voltage	Vod	-0.5	-	+25	V
RD voltage	Vrd	-0.5	-	+18	V
ISV voltage	Visv	-0.5	-	+18	V
ISH voltage	VISH	-0.5	-	+18	V
IGV voltage	VIG1V, VIG2V	-10	-	+15	V
IGH voltage	VIG1H, VIG2H	-10	-	+15	V
SG voltage	Vsg	-10	-	+15	V
OG voltage	Vog	-10	-	+15	V
RG voltage	Vrg	-10	-	+15	V
TG voltage	Vтg	-10	-	+15	V
Vertical clock voltage	VP1V, VP2V	-10	-	+15	V
Horizontal clock voltage	VP1H, VP2H	-10	-	+15	V

^{*2:} Chip temperature

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

□ Operating conditions (MPP mode, Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Output transistor drain voltage	!	Vod	18	20	22	V
Reset drain voltage		VRD	11.5	12	12.5	V
Output gate voltage		Vog	1	3	5	V
Substrate voltage		Vss	-	0	-	V
Test point (vertical input source	e)	VISV	-	V RD	-	V
Test point (horizontal input so	ırce)	VISH	-	V RD	-	V
Test point (vertical input gate)		VIG1V, VIG2V	-9	-8	0	V
Test point (horizontal input ga	œ)	VIG1H, VIG2H	-9	-8	0	V
Vertical shift register	High	VP1VH, VP2VH	4	6	8	V
clock voltage	Low	VP1VL, VP2VL	-9	-8	-7] v
Horizontal shift register	High	VP1HH, VP2HH	4	6	8	
clock voltage	Low	VP1HL, VP2HL	-9	-8	-7	V
Summing gate voltage	High	Vsgh	4	6	8	
Suffiffing gate voltage	Low	Vsgl	-9	-8	-7	V
Reset gate voltage	High	VRGH	4	6	8	V
Reset gate voltage	Low	VRGL	-9	-8	-7	V
Transfor gate voltage	High	VTGH	4	6	8	V
Transfer gate voltage	Low	VTGL	-9	-8	-7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
External load resistance		RL	20	22	24	kΩ

= Electrical characteristics (Ta=25 °C)

Parameter	Symbol	Min.	Тур.	Max.	Unit		
Signal output frequency		fc	-	0.25	1	MHz	
Vertical shift register canasitanse	S703*-0907(S)	CP1V, CP2V	-	1500	-	nE	
Vertical shift register capacitance	S703*-1007(S)	CPIV, CPZV	-	3000	-	pF	
Horizontal shift register	S703*-0907(S)	Ср1н, Ср2н	-	260	-	nE	
capacitance	S703*-1007(S)	CPIH, CPZH	-	300	-	pF	
Summing gate capacitance		Csg	-	30	-	pF	
Reset gate capacitance		Crg	-	30	-	pF	
Transfer gate canacitance	S703*-0907(S)	Стс	-	60	-	ъг	
Transfer gate capacitance	S703*-1007(S)	Стд	-	80	-	pF	
Charge transfer efficiency *3		Сте	0.99995	0.99999	-	-	
DC output level *4		Vout	12	15	18	V	
Output impedance *4		Zo	-	2	3	kΩ	
Power consumption *4 *5		Р	-	13	14	mW	

^{*3:} Charge transfer efficiency per pixel, measured at half of the full well capacity

^{*5:} Power consumption of the on-chip amplifier plus load resistance

^{*4:} The values depend on the load resistance. (Typ. VoD=20 V, Load resistance=22 $k\Omega$)

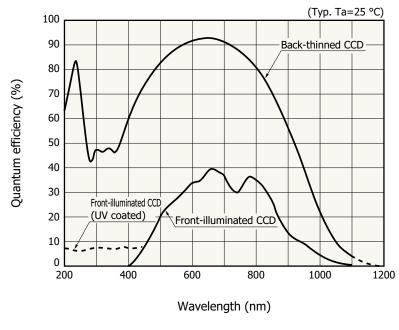
■ Electrical and optical characteristics (Ta=25 °C, unless otherwise noted)

	Parameter		Symbol	Min.	Тур.	Max.	Unit	
Saturation out	Saturation output voltage		Vsat	-	Fw × CE	-	V	
Vertical		Vertical	Fw	240	320	-	- ke-	
Full well capa	City	Horizontal *6	ΓW	2700	3400	-	, ke	
Conversion ef	ficiency		CE	0.5	0.6	-	μV/e ⁻	
Dark current *	*7	25 °C	DC	-	100	1000	o-/pivol/o	
(MPP mode)	(MPP mode)		DS	-	10	100	e ⁻ /pixel/s	
Readout noise	Readout noise *8		Nread	-	30	45	e- rms	
Dynamic rang	0 *9	Line binning	Drango	60000	113300	-	-	
Dynamic rang	e ,	Area scanning	Drange	5333	10700	-		
Photo respons	se non-uniformity *10)	PRNU	-	±3	±10	%	
Spectral respo	onse range		λ	-	200 to 1100	-	nm	
	Point defect *11	White spot		-	-	0		
Dlamiah	Politi delect	Black spot		-	-	10	1	
Blemish	Cluster defect *12	Cluster defect *12		-	-	3] -	
	column defect *13			-	-	0]	

^{*6:} The linearity is ±1.5 %.

Photo response non-uniformity (PRNU) =
$$\frac{\text{Fixed pattern noise (peak to peak)}}{\text{Signal}} \times 100 \text{ [%]}$$

*11: White spots


Pixels whose dark current is higher than 1 ke $^{-}$ after one-second integration at 0 °C.

Black spots

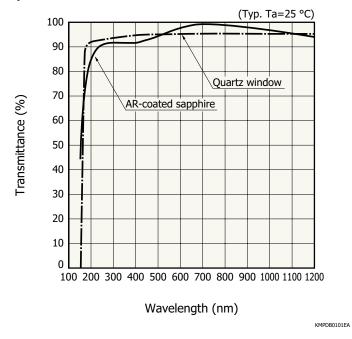
Pixels whose sensitivity is lower than one-half of the average pixel output. (Measured with uniform light producing one-half of the saturation charge)

- *12: 2 to 9 contiguous defective pixels
- *13: 10 or more contiguous defective pixels

Spectral response (without window) *14

KMPDB0058EB

*14: Spectral response with quartz glass or sapphire are decreased by the transmittance.

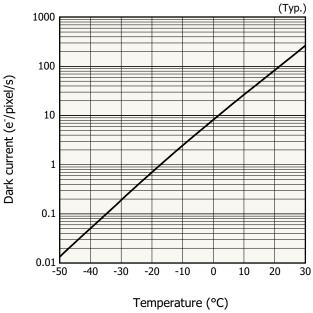

^{*7:} Dark current nearly doubles for every 5 to 7 °C increase in temperature.

^{*8:} Operating frequency is 150 kHz.

^{*9:} Dynamic range (Drange)=Full well/Readout noise

^{*10:} Measured at the half of the full well capacity output.

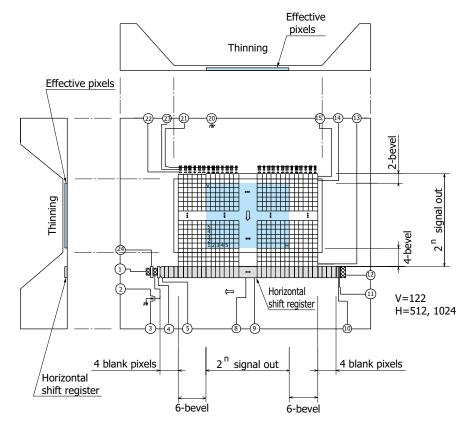
Spectral transmittance characteristics of window material



Window material

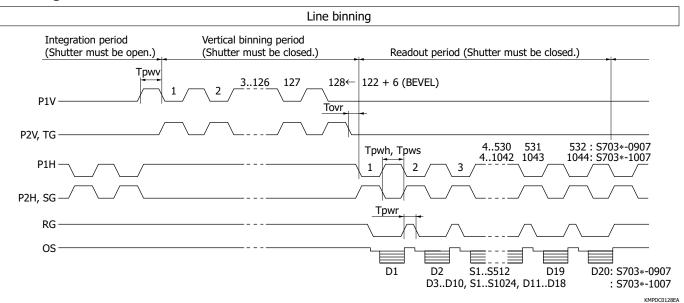
Type No.	Window material
S7033 series	Quartz glass *15
57055 Series	(option: window-less)
S7034 series	AR-coated sapphire *16
37034 Series	(option: window-less)
S7035 series	AR-coated sapphire *16
(two-stage TE-cooled type)	(option: window-less)

^{*15:} Resin sealing


₽ Dark current vs. temperature

KMPDB0256E

^{*16:} Hermetic sealing


Device structure (conceptual drawing of top view in dimensional outlines)

Note: When viewed from the direction of the incident light, the horizontal shift register is covered with a thick silicon layer (dead layer). However, long-wavelength light passes through the silicon dead layer and may possibly be detected by the horizontal shift register. To prevent this, provide light shield on that area as needed.

KMPDC0076EB

Timing chart

Р	arameter	Symbol	Min.	Typ.	Max.	Unit
D1V D2V TC *17	Pulse width	Tpwv	6 *18	8	-	μs
P1V, P2V, TG *17	Rise and fall time	Tprv, Tpfv	10	-	-	ns
	Pulse width	Tpwh	500	2000	-	ns
P1H, P2H *17	Rise and fall time	Tprh, Tpfh	10	-	-	ns
	Duty ratio	-	-	50	-	%
	Pulse width	Tpws	500	2000	-	ns
SG	Rise and fall time	Tprs, Tpfs	10	-	-	ns
	Duty ratio	-	-	50	-	%
RG	Pulse width	Tpwr	100	-	-	ns
NG	Rise and fall time	Tprr, Tpfr	5	-	-	ns
TG-P1H	Overlap time	Tovr	3	-	-	μs

^{*17:} Symmetrical clock pulses should be overlapped at 50 % of maximum amplitude. *18: In case of the S7033-1007, S7034-1007S

Area scanning (large full well mode) Integration period (Shutter must be open.) Readout period (Shutter must be closed.) Tpwy 4..127 128←122 + 6 (Bevel) P1V P2V, TG P1H P2H, SG RG OS: Enlarged view Tovr Tpwh, Tpws P2V, TG P1H

KMPDC0130EA

D20: S703*-0907

: S703*-1007

P	arameter	Symbol	Min.	Тур.	Max.	Unit
P1V, P2V, TG *19	Pulse width	Tpwv	6 * ²⁰	8	-	μs
P1V, P2V, 1G 19	Rise and fall time	Tprv, Tpfv	10	-	-	ns
	Pulse width	Tpwh	500	2000	-	ns
P1H, P2H *19	Rise and fall time	Tprh, Tpfh	10	-	-	ns
	Duty ratio	-	-	50	-	%
	Pulse width	Tpws	500	2000	-	ns
SG	Rise and fall time	Tprs, Tpfs	10	-	-	ns
	Duty ratio	-	-	50	-	%
RG	Pulse width	Tpwr	100	-	-	ns
KU	Rise and fall time	Tprr, Tpfr	5	-	-	ns
TG-P1H	Overlap time	Tovr	3	-	-	μs

S1..S512

D5..D10, S1..S1024, D11..D17

D18

D19

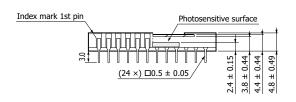
Tpwr

D1

D2

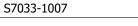
D3

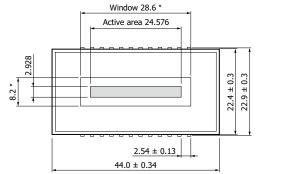
P2H, SG

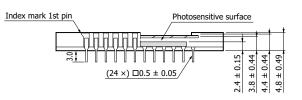

RG OS

^{*19:} Symmetrical pulses should be overlapped at 50 % of maximum amplitude.

^{*20:} In case of the 7033-1007, S7034-1007S

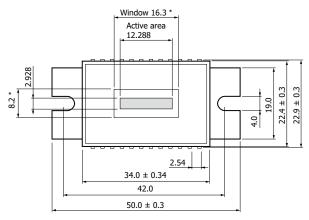

Dimensional outlines (unit: mm)

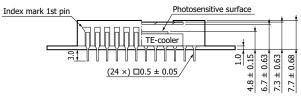




* Size of window that guarantees the transmittance in the "Spectral transmittance characteristics" graph

KMPDA0080EC

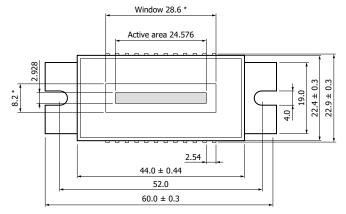


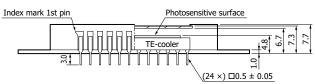


* Size of window that guarantees the transmittance in the "Spectral transmittance characteristics" graph

KMPDA0081EC

S7034-0907S





* Size of window that guarantees the transmittance in the "Spectral transmittance characteristics" graph

KMPDA0082ED

S7034-1007S

* Size of window that guarantees the transmittance in the "Spectral transmittance characteristics" graph

KMPDA0083ED

Pin connections

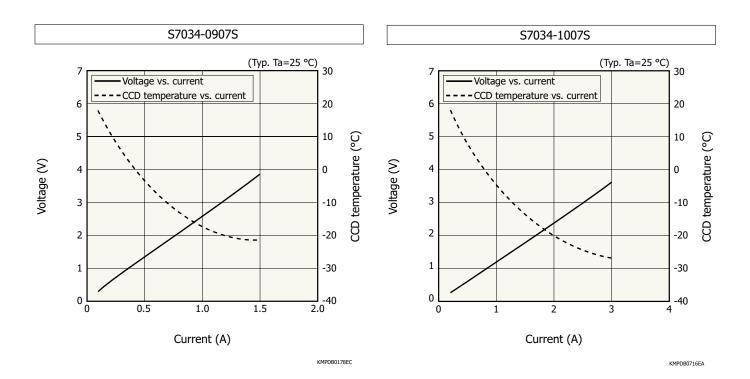
Pin		S7033 series		S7034 series	Remark
No.	Symbol	Function	Symbol	Function	(standard operation)
1	RD	Reset drain	RD	Reset drain	+12 V
2	OS	Output transistor source	OS	Output transistor source	RL=22 kΩ
3	OD	Output transistor drain	OD	Output transistor drain	+20 V
4	OG	Output gate	OG	Output gate	+3 V
5	SG	Summing gate	SG	Summing gate	Same pulse as P2H
6	-		-		
7	-		-		
8	P2H	CCD horizontal register clock-2	P2H	CCD horizontal register clock-2	
9	P1H	CCD horizontal register clock-1	P1H	CCD horizontal register clock-1	
10	IG2H	Test point (horizontal input gate-2)	IG2H	Test point (horizontal input gate-2)	-8 V
11	IG1H	Test point (horizontal input gate-1)	IG1H	Test point (horizontal input gate-1)	-8 V
12	ISH	Test point (horizontal input source)	ISH	Test point (horizontal input source)	Connect to RD
13	TG *21	Transfer gate	TG *21	Transfer gate	Same pulse as P2V
14	P2V	CCD vertical register clock-2	P2V	CCD vertical register clock-2	
15	P1V	CCD vertical register clock-1	P1V	CCD vertical register clock-1	
16	-		Th1	Thermistor	
17	-		Th2	Thermistor	
18	-		P-	TE-cooler-	
19	-		P+	TE-cooler+	
20	SS	Substrate (GND)	SS	Substrate (GND)	GND
21	ISV	Test point (vertical input source)	ISV	Test point (vertical input source)	Connect to RD
22	IG2V	Test point (vertical input gate-2)	IG2V	Test point (vertical input gate-2)	-8 V
23	IG1V	Test point (vertical input gate-1)	IG1V	Test point (vertical input gate-1)	-8 V
24	RG	Reset gate	RG	Reset gate	

^{*21:} Isolation gate between vertical register and horizontal register.
In standard operation, TG should be applied the same pulse as P2V.

Specifications of built-in TE-cooler (Typ.)

Parameter	Symbol	Condition	S7034-0907S	S7034-1007S	Unit
Internal resistance	Rint	Ta=25 °C	2.5	1.2	Ω
Maximum current *22	Imax	Tc *23=Th *24=25 °C	1.5	3.0	Α
Maximum voltage	Vmax	Tc *23=Th *24=25 °C	3.8	3.6	V
Maximum heat absorption *25	Qmax		3.4	5.1	W
Maximum temperature of heat radiating side	-		70	70	°C

^{*22:} If the current greater than this value flows into the thermoelectric cooler, the heat absorption begins to decrease due to the Joule heat. It should be noted that this value is not the damage threshold value. To protect the thermoelectric cooler and maintain stable operation, the supply current should be less than 60 % of this maximum current.



^{*23:} Temperature of the cooling side of thermoelectric cooler

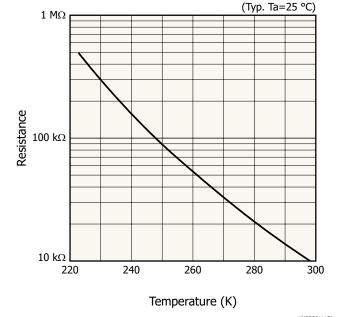
^{*24:} Temperature of the heat radiating side of thermoelectric cooler

^{*25:} This is a theoretical heat absorption level that offsets the temperature difference in the thermoelectric cooler when the maximum current is supplied to the unit.

S7033/S7034 series

Specifications of built-in temperature sensor

A thermistor chip is built in the same package with a CCD chip, and the CCD chip temperature can be monitored with it. A relation between the thermistor resistance and absolute temperature is expressed by the following equation.


 $RT1 = RT2 \times exp BT1/T2 (1/T1 - 1/T2)$

RT1: Resistance at absolute temperature T1 [K] RT2: Resistance at absolute temperature T2 [K]

BT1/T2: B constant [K]

The characteristics of the thermistor used are as follows.

R298=10 kΩ B298/323=3450 K

KMPDB0111EA

CCD area image sensors

S7033/S7034 series

Precaution for use (electrostatic countermeasures)

- Handle these sensors with bare hands or wearing cotton gloves. In addition, wear anti-static clothing or use a wrist band with an earth ring, in order to prevent electrostatic damage due to electrical charges from friction.
- Avoid directly placing these sensors on a work-desk or work-bench that may carry an electrostatic charge.
- Provide ground lines or ground connection with the work-floor, work-desk and work-bench to allow static electricity to discharge.
- Ground the tools used to handle these sensors, such as tweezers and soldering irons.

It is not always necessary to provide all the electrostatic measures stated above. Implement these measures according to the amount of damage that occurs.

Element cooling/heating temperature incline rate

Element cooling/heating temperature incline rate should be set at less than 5 K/min.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- Disclaimer
- · Image sensors
- Technical note
- · CCD image sensors

Information described in this material is current as of October 2023.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

MAMATSU

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

ILIZO-I ICHINIO-CIRO, RIGIDASI II-RU, RIGITIATINGUSU CIRO, POS-OSO JAPAIN, Telephone: (1)908-231-0960, Fax: (1)908-231-1218

Germany: HAMAMATSU CROPORATION: 360 Footbill Road, Bridgewater, NJ 08807, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218

Germany: HAMAMATSU PHOTONICS DEUTSCHLAND GMBH: Arzbergerstr. 10, 82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8 E-mail: info@hamamatsu.de

France: HAMAMATSU PHOTONICS FRANCE S.A.R.L.: 19 Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (34)1707-325777 E-mail: info@hamamatsu.de

North Europe: HAMAMATSU PHOTONICS UK LIMITED: 2 Howard Court, 10 Tewin Road, Welwyn Garden, City, Hertfordshire, AL7 18W, UK, Telephone: (44)1707-325777 E-mail: info@hamamatsu.co.uk

North Europe: HAMAMATSU PHOTONICS STALIA S.R.L.: Strada della Moia, 1 int. 6 20044 Arese (Milano), Italy, Telephone: (46)8-509-031-01, Fax: (49)8-509-031-01 E-mail: info@hamamatsu.it

Taly: HAMAMATSU PHOTONICS (CHINA) CO., LTD.: 1201, Tower B, Jianning Center, 27 Dongsanhuan Bellu, Chaoyang District, 100020 Beijing, PR. China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-6006, Fax: (86)10-6586-6008, Fax: (86)10-6586-6