

PHOTON IS OUR BUSINESS

CMOS linear image sensors

S9226 series

Built-in timing generator and signal processing circuit

The S9226 series is a small CMOS linear image sensor designed for image input applications. The signal processing circuit has a charge amplifier with excellent input/output characteristics. Two package styles are provided: a DIP type and a surface mount type.

Features

- Pixel pitch: 7.8 μm Pixel height: 125 μm
- 1024 pixels
- 3.3 V single power supply operation available
- High sensitivity, low dark current, low noise
- On-chip charge amplifier with excellent input/output characteristics
- Built-in timing generator allows operation with only start and clock pulse inputs.
- Video data rate: 200 kHz max.
- Spectral response range: 400 to 1000 nm
- Two package styles are provided: DIP (dual inline package) type: S9226-03 Surface mount type: S9226-04

Applications

- Analytical instruments
- Position detection
- Image reading

Structure

Parameter	S9226-03	S9226-04	Unit		
Number of pixels	10	-			
Pixel pitch	7.8				
Pixel height	125				
Photosensitive area length	7.9872				
Package	Ceramic				
Window material	Borosilicate glass				

Absolute maximum ratings

Parameter Symbol		Condition	Value	Unit	
Supply voltage Vdd		Ta=25 °C	-0.3 to +6	V	
Gain selection terminal voltage Vg		Vg	Ta=25 °C	-0.3 to +6	V
Clock pulse voltage V(CLK)		Ta=25 °C	-0.3 to +6	V	
Start pulse voltage V(ST		V(ST)	Ta=25 °C	-0.3 to +6	V
Operating temperature To		Topr	No dew condensation*1	-20 to +60	°C
Storage temperature		Tstg	No dew condensation*1	-20 to +70	°C
Soldering	S9226-03	Tsol		*2	
temperature	S9226-04	1501		240 (twice)*3	-

*1: When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.

*2: See the recommended soldering conditions (P.9). *3: Reflow soldering, IPC/JEDEC J-STD-020 MSL 5, see P.9

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Recommended terminal voltage (Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Supply voltage		Vdd	3.3	5	5.25	V
Gain selection terminal voltage	High gain	Va	-	0	-	V
Gain selection terminal voltage	Low gain	Vg	Vdd - 0.25	Vdd	Vdd + 0.25	V
Clock pulse voltage	High level		Vdd - 0.25	Vdd	Vdd + 0.25	V
	Low level	V(CLK)	-	0	-	V
Start pulse voltage	High level	V(ST)	Vdd - 0.25	Vdd	Vdd + 0.25	V
	Low level		-	0	-	V

Electrical characteristics [Ta=25 °C, Vdd=5 V, V(CLK)=V(ST)=5 V]

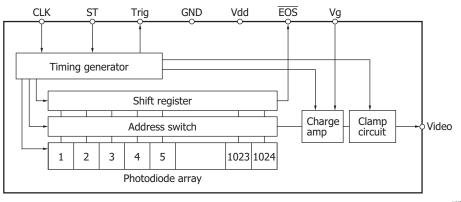
Parameter		Symbol	Min.	Тур.	Max.	Unit
Clock pulse frequency		f(CLK)	10	-	800	kHz
Data rate		DR	-	f(CLK)/4	-	kHz
Current consumption		Ic	4	6	8	mA
Conversion officiency	High gain	CE	-	3.2	-	u)//o-
Conversion efficiency	Low gain		-	1.6	-	μV/e-
Output impedance		Zo	-	185	-	Ω

Electrical and optical characteristics [Ta=25 °C, Vdd=5 V, V(CLK)=V(ST)=5 V]

Parameter		Symbol	Min.	Тур.	Max.	Unit	
Spectral response range		λ		nm			
Peak sensitivity wavelength		λp	- 650 -		-	nm	
Dark current		ID	-	5	50	fA	
Dark output voltage*4	High gain	VD	-	0.8	8	mV	
	Low gain	VD	-	0.4	4		
Saturation output voltage*5		Vsat	2.2	3.2	-	V	
High gain		Nread	-	1.4	2.2	mV rms	
Readout noise	Low gain	Inteau	-	0.7	1.1	mv rms	
Offset output voltage		Voffset	0.2	0.35	0.6	V	
Photoresponse nonuniformity*6 *7		PRNU		-	±5	%	

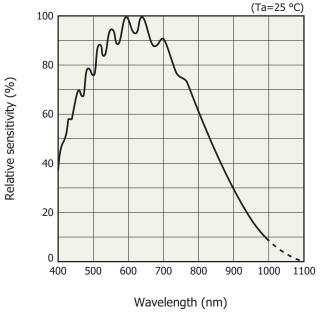
*4: Integration time=10 ms

*5: Voltage difference with respect to Voffset


*6: Photoresponse nonuniformity (PRNU) is the output nonuniformity that occurs when the entire photosensitive area is uniformly illuminated by light which is 50% of the saturation exposure level. PRNU is measured using 1022 pixels excluding the pixels at both ends, and is defined as follows:

 $\mathsf{PRNU} = \Delta \mathsf{X}/\mathsf{X} \times 100 \ (\%)$

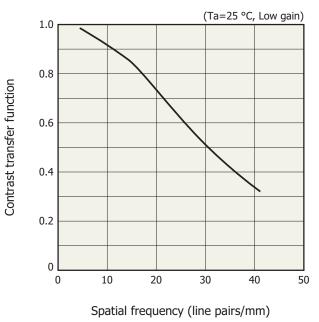
X: average output of all pixels, ΔX : difference between X and maximum or minimum output


*7: Measured with a tungsten lamp of 2856 K

Block diagram

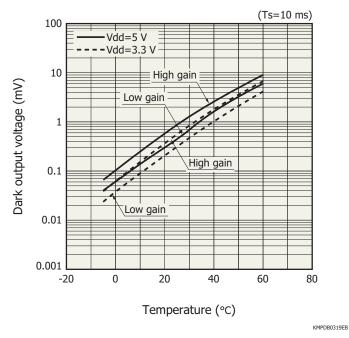
Spectral response (typical example)

KMPDB0229EC


Resolution

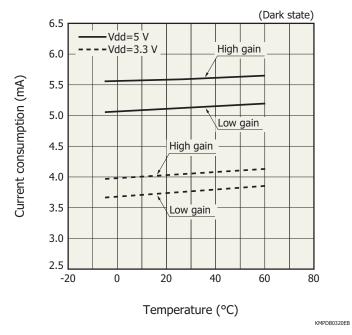
CTF: contrast transfer function

$$CTF = \frac{Vwo - V_{BO}}{Vw - V_B}$$

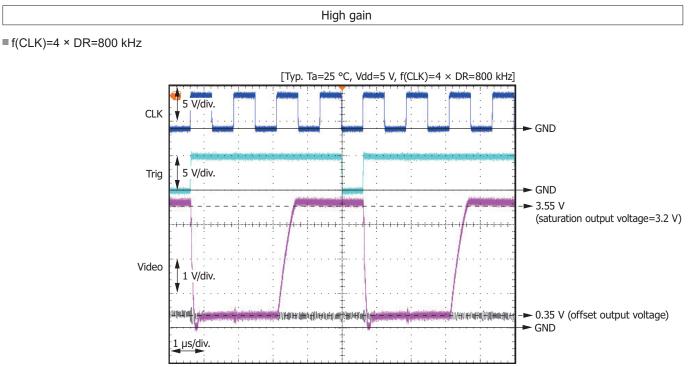

- Vwo: output white level
- VBO : output black level
- VB : output white level (when input pattern pulse width is wide) VB : output black level (when input pattern pulse width is wide)

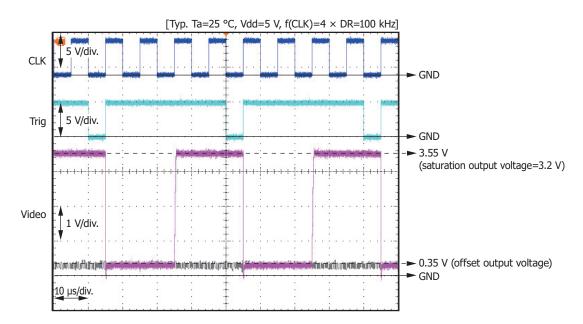
Contrast transfer function vs. spatial frequency (typical example)

KMPDB0318EC

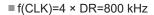


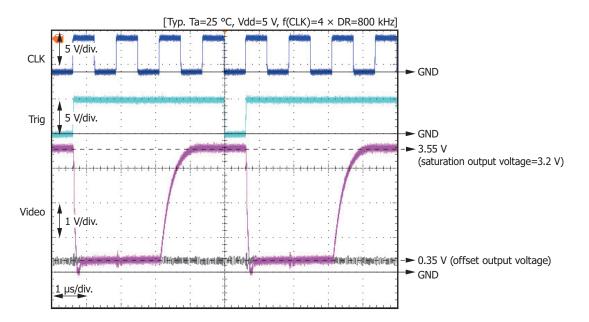
Dark output voltage vs. temperature (typical example)

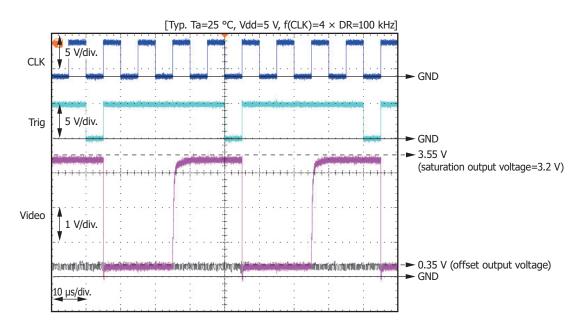




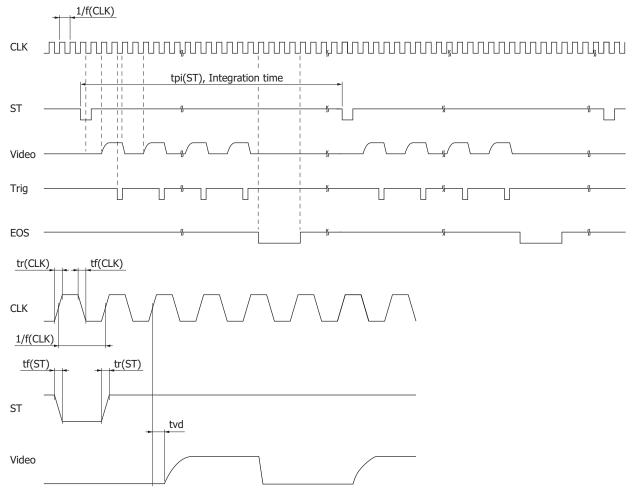
Output waveform of one element




■ f(CLK)=4 × DR=100 kHz



Low gain

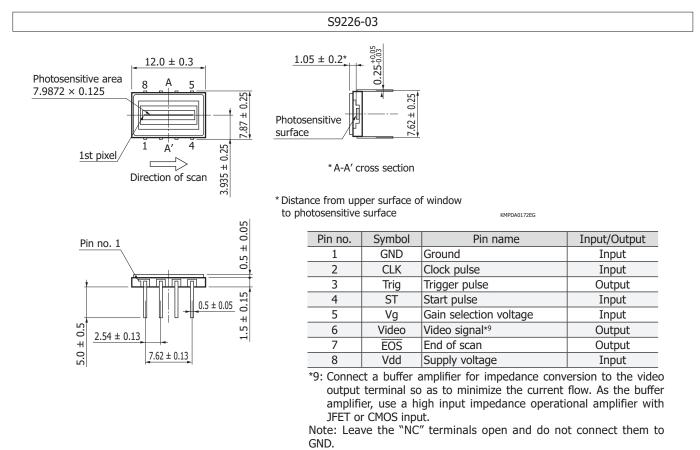


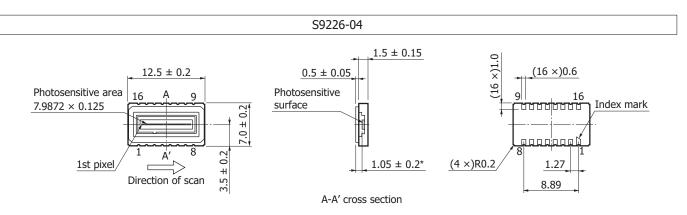
■ f(CLK)=4 × DR=100 kHz

Timing chart

KMPDC0164EC

Parameter	Symbol	Min.	Тур.	Max.	Unit
Start pulse cycle	tpi(ST)	4104/f(CLK)	-	-	S
Start pulse rise and fall times	tr(ST), tf(ST)	0	20	30	ns
Clock pulse duty ratio	-	40	50	60	%
Clock pulse rise and fall times	tr(CLK), tf(CLK)	0	20	30	ns
Video delay time ^{*8}	tvd	10	20	30	ns


*8: Ta=25 °C, Vdd=5 V, V(CLK)=V(ST)=5 V


Note: The CLK pulse should be set from high to low just once when the st pulse is low. The internal shift register starts operating at this timing.

The integration time is determined by the start pulse cycles. However, since the charge integration of each pixel is carried out between the signal readout of that pixel and the next signal readout of the same pixel, the start time of charge integration differs depending on each pixel. In addition, the next start pulse cannot be input until signal readout from all pixels is completed.

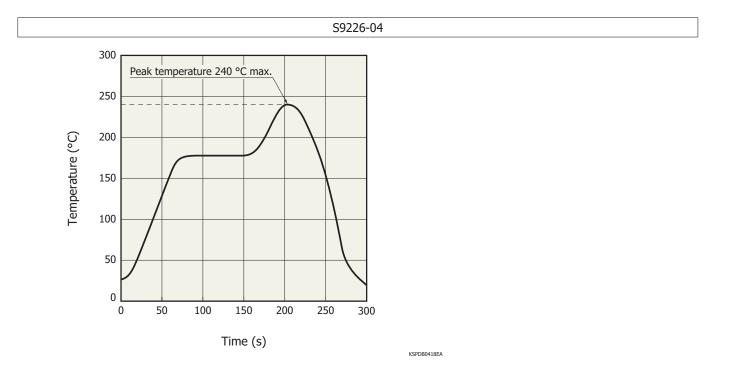
Dimensional outlines (unit: mm)

* Distance from upper surface of window to photosensitive surface

Pin no.	Symbol	Pin name	Input/Output	Pin no.	Symbol	Pin name	Input/Output
1	NC	No connection		9	NC	No connection	
2	NC	No connection		10	NC	No connection	
3	GND	Ground	Input	11	Vg	Gain selection voltage	Input
4	CLK	Clock pulse	Input	12	Video	Video signal*9	Output
5	Trig	Trigger pulse	Output	13	EOS	End of scan	Output
6	ST	Start pulse	Input	14	Vdd	Supply voltage	Input
7	NC	No connection		15	NC	No connection	
8	NC	No connection		16	NC	No connection	

*9: Connect a buffer amplifier for impedance conversion to the video output terminal so as to minimize the current flow. As the buffer amplifier, use a high input impedance operational amplifier with JFET or CMOS input.

Note: Leave the "NC" terminals open and do not connect them to GND.



KMPDA0258ED

Recommended soldering conditions

S9226-03					
Parameter Specification Remarks					
Solder temperature 260 °C max. (less than 5 s) -					

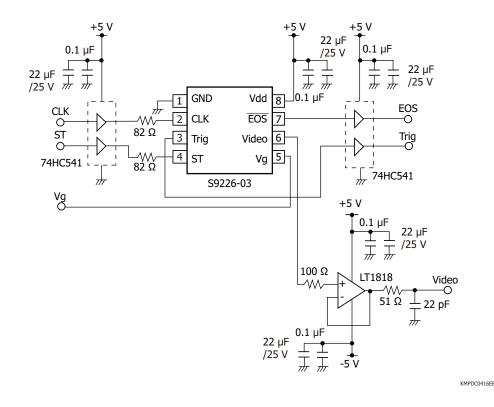
Note: When setting the soldering conditions, check for any problems by testing out the soldering methods in advance.

- This product (S9226-04) supports lead-free soldering. After unpacking, store it in an environment at a temperature of 30 °C or less and a humidity of 60% or less, and perform soldering within 48 hours.
- The effect that the product receives during reflow soldering varies depending on the circuit board and reflow oven that are used. Before actual reflow soldering, check for any problems by testing out the reflow soldering methods in advance.
- A sudden temperature rise and cooling may be the cause of trouble, so make sure that the temperature change is within 4 °C per second.
- The bonding portion between the ceramic base and the glass may discolor after reflow soldering, but this has no adverse effects on the hermetic sealing of the product.

Precautions

(1) Electrostatic countermeasures

This device has a built-in protection circuit against static electrical charges. However, to prevent destroying the device with electrostatic charges, take countermeasures such as grounding yourself, the workbench and tools to prevent static discharges. Also protect this device from surge voltages which might be caused by peripheral equipment.


(2) Light input window

If the incident window is contaminated or scratched, the output uniformity will deteriorate considerably, so care should be taken in handling the window. Avoid touching it with bare hands.

The window surface should be cleaned before using the device. If dry cloth or dry cotton swab is used to rub the window surface, static electricity may be generated, and therefore this practice should be avoided. Use soft cloth, cotton swab or soft paper moistened with ethyl alcohol to wipe off dirt and foreign matter on the window surface.

(3) UV exposure

This product is not designed to prevent deterioration of characteristics caused by UV exposure, so do not expose it to UV light.

Application circuit example (S9226-03)*¹⁰

*10: The S9226-04 has a different pin connections, but uses the same circuit.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- · Disclaimer
- · Image sensors/Precautions
- · Surface mount type products/Precautions

Information described in this material is current as of December 2021.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

HAMAMATSU PHOTOVILS K.K., Solid State Division 1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184 U.S.A: Hamamatsu Photonics: 360 Foothill Road, Bridgewater, N.J. 08807, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218, E-mail: us@@mamatsu.com Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, 82211 Herrsching am Anmersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8, E-mail: info@hamamatsu.de France: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, 82211 Herrsching am Anmersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8, E-mail: info@hamamatsu.de France: Hamamatsu Photonics France S.A.R.L: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 51882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10, E-mail: info@hamamatsu.de Ninted Kingdom: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46)8-509 031 00, Fax: (40)8-509 031 01, E-mail: info@hamamatsu.se Italy: Hamamatsu Photonics Itala S.r.L: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy, Telephone: (46)8-509 031 01, Fax: (46)8-509 031 01, E-mail: info@hamamatsu.se Italy: Hamamatsu Photonics Itala S.r.L: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy, Telephone: (40)9-39 58 17 33, Fax: (39)02-93 58 17 41, E-mail: info@hamamatsu.se Italy: Hamamatsu Photonics Itala S.r.L: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy, Telephone: (40)8-509 031 00, Fax: (46)8-509 031 01, E-mail: info@hamamatsu.se Italy: Hamamatsu Photonics Itala S.r.L: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy, Telephone: (10)020 Beijing, P.R.China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-6006, Fax: (86)10-6586-6006, Fax: (86)10-6586-6006, Fax: (86)10-6586-6006, Fax: (86)10-6586-6006, Fax: (86)3-659-0081, E-mail: info@hamamatsu.com.tw