Positioned for growth: Mechanical forces help cells find their place in early embryos.

Research Areas:

Cell biology, Developmental biology, Embryogenesis, C. elegans

 

Imaging Needs:

Low-light capabilities, fast image acquisition, SPIM, Light-sheet microscopy

 

Imaging System:
  • Cobolt Calypso DPSS laser for sample illumination
  • Thorlabs beam expander
  • Thorlabs cylindrical lens LJ1277L1-A
  • Leica Microsystems illumination objectives: HCX QPO L 10x/0.30 W U-V-I and HCX APO L 40x/0.80 W U-V-I
  • Semrock Brightline 531/46 nm single-band filter
  • Hamamatsu ORCA-Flash4.0 sCMOS camera

 

 

Measuring protein interactions in cells, whole organisms

Measuring protein interactions in living cells is one thing, but what if you want to measure interactions within an intact, living organism? Find out how Takeaki Ozawa and colleagues screen for GPCR ligands in mice in Illuminating Activity—in vitro and in vivo. Read now.

THE QUESTION

How to cells in new embryos position themselves for further growth?

 

During its first several cell divisions, a new embryo must set its right from its left, and head from toe. Many studies and genetic analyses have focused on the role of morphogens in triggering cell migration and differentiation. Little attention has focused on the role of simple mechanical forces.

 

THE BARRIERS

Quantitative, real-time measurement of developing organisms has been limited by the speed of available three-dimensional fluorescence microscopy methods. Moreover, existing approaches required light that would be phototoxic to sensitive organisms with repeated or prolonged exposure.

 

THE SOLUTION

Mechanical Cues in the Early Embryogenesis of Caenorhabditis elegans
Rolf Fickentscher, Philipp Struntz, and Matthias Weiss
Biophysical Journal. 2013 Oct 105: 1805–1811. PMCID: PMC3797578.

 

Fickentscher, et al,1 took advantage of advances in imaging techniques over the last decade, using what’s called light-sheet or selective plane illumination microscopy (SPIM) to illuminate only a slice some 700 micrometers in thickness. The gentler light enabled repeated exposure without phototoxicity to growing organisms. A Hamamatsu ORCA-Flash4.0 sCMOS camera, oriented perpendicular to the plane of illumination, captured fluorescence signal from C. elegans embryos expressing GFP-tagged H2B histones and beta-tubulin. The bright signal from the nucleus and cytoskeleton enabled precise tracking of nuclei, cell division and spindle axes.

 

The high spatial and temporal resolution images showed that the trajectory of each cell during early embryogenesis is highly consistent among embryos. Using a simple mathematical model, the were able to predict cell arrangements up to the 12-cell stage based exclusively on mechanical forces between cells, and between cells and the embryo’s egg shell. The model reliably predicted the cells’ planar positioning and formation of the dorsal-ventral body axis.

 

THE POSSIBILITIES

Fickentscher, et al,1 relied on the sensitivity and fast frame rates of Hamamatsu’s ORCA-Flash4.0 sCMOS camera to track cell movement without overexposing sensitive developing embryos, using fluorescence microscopy. To explore options for luminescence studies, read how Takeaki Ozawa and colleagues use the ImagEM to detect GPCR binding in Illuminating Activity—in vitro and in vivo.

 

01. Fickentscher, et al. Mechanical Cues in the Early Embryogenesis of Caenorhabditis elegans. Biophysical Journal. 2013 Oct 105: 1805–1811. PMCID: PMC3797578.
 

Go to top

Was this information helpful to you?