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Diffraction is a fundamental physical phenomenon that occurs when scattering wave sources are arranged
periodically. For example, when x rays are incident on the common salt crystals, diffraction occurs owing to
the periodic structure of the chlorine and sodium atoms. Recent advances in nanotechnology have enabled
artificial control of the scattering points even in visible wavelengths. These artificial structures are called photonic
crystals and are related to many interesting phenomena. Dispersion relations between wave vector and frequency
are called band structures. Similar to the band structures of electrons and holes in crystals, photonic bands
for dispersion determine the direction of propagation of light waves by diffraction of the periodic structures.
Herein, we introduce band engineering which enables multiple replications of bands in arbitrary wave vectors
by holographic modulation. We have already realized a patterned light source named “iPMSEL” as a typical
application of holographically engineered photonic band. The iPMSEL has been realized by combining photonic-
crystal surface-emitting lasers and holographic engineering. It can emit arbitrary multiple beam patterns and even
photographic images from a tiny semiconductor chip without any optical components. In this paper, we study
the iPMSEL from the viewpoint of the photonic-band replication and operation mechanism. While this work is
based on photonics, the findings can also be applied to other fields of physics concerned with diffraction. We

believe that this work provides useful methods with respect to periodic structures within all scale ranges.

DOLI: 10.1103/PhysRevB.103.245310

I. INTRODUCTION

Diffraction is a special case of scattering in which the
scattered wave sources are arranged periodically and interfere
mutually—constructively or destructively—in specific direc-
tions that Feynman pointed out as, “in order to calculate
correctly the probability of an event in different circum-
stances, we have to add the arrows for every way that the event
could happen—not just the ways we think are the important
ones!” [1]. In other words, grating is the device that changes
the direction of light by controlling interference between
periodically arranged scattered wave sources. Such periodic
scattering structures can be artificially fabricated using nan-
otechnology and are called photonic crystals (PCs) [2-5]. One
of the successful applications of PCs is in surface-emitting
lasers. In two-dimensional (2D) PCs, 2D standing waves can
be formed via 2D diffraction. A PC surface-emitting laser
[6-14] (PCSEL) uses the standing wave condition of the 2D
PC as a resonator; further, as it enables broad-area lasing,
high-quality broad-area plane waves can be obtained, result-
ing in narrow divergence beams.

Directional emissions called photonic bands can be ob-
served that provide useful information about the PC resonator
[15-24]. For example, the so-called band edge at which the
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slope of a photonic band is zero corresponds to the zero
group-velocity condition and lasing occurs under sufficient
gain. Subsequently, engineering of the band edge is one of
the important issues in constructing photonic-crystal lasers.
New band edges can be created at the points at which different
bands cross each other in a composite PC with superimposed
square and rectangular lattices [24]. Thus, the period of the
structure can be modified to engineer the photonic bands;
particularly, several studies have been performed on introduc-
ing the supercell structure whose period needs to be double
[18,19,23,25] in order to observe the photonic band below
the light line [18,19,23] and to create an automated design
of the PC [21,22]. From the viewpoint of a period, quasi-PCs
have also been studied [26-29]; however, more controllable
methods that can create multiple photonic bands in arbitrary
wave vectors have not been reported.

Recently, we proposed and evaluated a functional
laser source called the integrable spatial phase-modulating
surface-emitting laser (iIPMSEL), which emits a static two-
dimensional beam pattern [30-33]. In the iPMSEL, a plane-
wave source and hologram [34] are integrated into an area
less than 1 x 1 mm?2. Computer generated holograms (CGHs)
have been used as effective tools for generating beam patterns
[34]. The detour-phase method is one of the most common
techniques for producing binary holograms [35]; a binary
window pattern is used with this method and each window
is plotted as a two-dimensionally shifted position correspond-
ing to the spatial phase distribution (see Appendix A). By
irradiating the plane wave from the laser source, the wave
front is spatially modulated, and the desired beam pattern
can be obtained. Therefore, we can control interference to
obtain a highly sophisticated wave front by utilizing the
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FIG. 1. Device structure of the iPMSEL.

CGH. The iPMSEL uses the quasiperiodic PC resonator as a
plane-wave source, based on the PCSEL, and each of its air
holes is two-dimensionally shifted holographically, similar to
the detour-phase method. When first reported [30], we had
not observed the band edge of the complicated beam pattern
since there are many bright spots that weaken the diffraction
of each spot and hinder the observation of the band edge.
Recently, we observed that the photonic band is multiply
replicated, and each lasing band edge corresponds to a bright
spot, constituting the multispot pattern. Our finding indicates
that owing to holographic modulations, photonic bands can be
replicated in arbitrary wave vectors, as many as desired.

II. DEVICE STRUCTURE AND OPERATION MECHANISM
A. Device structure

Figure 1 shows the device structure of the iPMSEL.
The phase-modulating and active layers are put between the
cladding layers; a spatially modulated wave front is formed
in the phase-modulating layer and emitted in the vertical di-
rection. Figure 2 shows the phase-modulating layer. Using the
target pattern [Fig. 2(a)], we obtained the phase distribution
¢ [Fig. 2(b)] corresponding to which each air hole is shifted
as shown in Fig. 2(c). Figure 2(d) shows a scanning electron
microscope image of the phase-modulating layer where each
air hole is slightly shifted from the square lattice. The Fourier
spectrum of the phase distribution ¢ is shown in Fig. 2(e). The
rotational symmetric pattern accompanies the target pattern
owing to the in-plane counter propagating standing waves,
hence, 6 x 6 spot patterns are obtained. This means that the
positional shift of air holes changes the wave front such that
the 6 x 6 spot patterns can be obtained. An additional phase
shift as shown in Fig. 3 is introduced to emit the beam pattern
vertically because the modulated wave front propagates only
in the in-plane directions without the phase shift as mentioned
later (see Appendix B and [32,33] for more details).
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FIG. 2. Phase-modulating layer: (a) target pattern (enlarged view
around center), (b) phase distribution, (c) air-hole position in the unit
cell, scanning electron microscope image, and (e) Fourier spectrum
of phase distribution in (b).

The phase distribution is optimized using the iteration
method based on the Gerchberg-Saxton (GS) algorithm [36],
and essential information for image construction can be ob-
tained in the phase terms of the complex amplitude. The
electro-magnetic field related with the light propagation is de-
scribed as having a complex amplitude. Therefore, ideally, by
reproducing the complex amplitude distribution of the wave
front on the device, an arbitrary beam pattern is constructed.
In the detour-phase method, the amplitude and phase infor-
mation are reflected in the size and positional shift of the
window, respectively. The phase only hologram is suitable
for the unified size of an air hole. We adopt the phase only
hologram based on the GS algorithm. This brings a major
advantage from the viewpoint of fabrication. Ideally, the beam
pattern can be considered as a collection of bright spots. It is
clear that the complex amplitude of the multiple spot pattern
corresponds to the sum of the complex amplitude of each spot
as a result of the superposition principle. As we discuss later,
the approach of the superposition of the complex amplitude
gives similar results as the holographic approach. Thus, in
principle, the holographic approach can be interpreted as a
superposition of the diffraction of each spot. However, the
above-mentioned holographic approach provides a practical
way to generate the arbitrary beam patterns.
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FIG. 3. Concept of phase distribution of the iPMSEL (IFT:
inverse Fourier transformation).

B. Operation mechanism

Figure 4(a) depicts the reciprocal lattice space of a square-
lattice PC. The large circles indicate the I" points, and the
small circles indicate the X and M points; the X points are
the midpoints of the I' points along the k. or k, axis, and
the M points are the midpoints of the I points along the
diagonal. Further, the solid line represents the first Brillouin
zone [5], and the light line is represented with a dashed circle
of radius k. Figure 4(b) represents the photonic band; the
dashed line represents the light line which corresponds to
the total internal reflection (TIR) condition, and below the
light line, all the incident light is reflected owing to the TIR.
Therefore, the output light below the light line is not emitted
out of the plane directly. The gray area corresponds to the
region below the light line. At the light line, the incident angle
0. satisfies Snell’s law, i.e., sinf. = 1/ne, Where neg is the
effective refractive index of light. The magnitude of &y can
be obtained by projection of ki as |kair| sin 6, = |kt |. Since
kair = 27 /1, |kiL| = 27 /(Anegr), where A is the wavelength;
therefore, the position of the light line depends on #n.g. The
band edge labeled “I'” is the I point used with our early
stage device [30,31] and is above the light line; the band edge
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FIG. 4. Light line: (a) light line on the reciprocal lattice space,
and (b) light line on the photonic band.
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FIG. 5. Concept map of wave front of the square lattice in recip-
rocal lattice space: (a), (b) I point of square lattice PC, (c), (d) M
point of square lattice PC, (e) M point of the iPMSEL, (f) Intuitive
image of the spatial phase modulation of the wave front of the output
beam due to positional shift of the holes. The fluctuation of the wave
front has been magnified for visibility.

labeled “M” is the M point used with the iPMSEL [32,33]
studied herein and is below the light line.

Next, we will discuss as to how the standing wave con-
dition is created at the I' and M point. When a carrier is
injected from an electrode, a photon is generated at the active
layer. It creates a localized mode in the thickness direction
between the cladding layers and a part of the light wave exists
on the phase-modulating layer. Therefore, the light wave is
scattered by the air holes. Figure 5(a) shows this on a recip-
rocal lattice space. The four blue arrows indicate the wave
vectors of the fundamental light waves propagating in the
plus and minus I'-X and I'-Y directions. There are two ele-
mentary reciprocal lattice vectors indicated by the red arrows
parallel to the I'-X and I'-Y directions respectively. Figure
5(b) exhibits a perspective of the view. As the magnitude of
the in-plane wave vectors are equal to that of the elementary
lattice vectors, the in-plane magnitudes become zero owing to
the diffraction effect of the elementary lattice vector, and they
change the direction in the plus and minus z directions owing
to the law of conservation of momentum. This corresponds to
the diffraction in the vertical direction. In contrast, in case of
the M point, as shown in Fig. 5(c), four in-plane wave vectors
propagating in the I'-M directions are formed. However, in
this case as the magnitude of the in-plane wave vectors and
elementary reciprocal lattice vectors are different, the in-plane
wave vectors cannot couple to the vertical direction. By intro-
ducing the shift vector as a diffraction effect which cancels
the in-plane wave vector, a diffraction in the vertical direction
occurs [Fig. 5(d)].
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FIG. 6. Far-field pattern: (a) above lasing threshold current (CW 400 mA) and (b) below lasing threshold current (CW 320 mA).

The mechanism described above is simplified for ease of
understanding. However, in reality, all the air holes are holo-
graphically shifted and the vertically propagating wave front
is modulated to generate a desired beam pattern without using
any optical components as shown in Figs. 5(e) and 5(f) (see
Appendix B and [32,33] for more details).

III. RESULTS AND DISCUSSION
A. Far-field pattern and photonic band of iPMSEL

Figure 6 represents the measured far-field patterns of the
iPMSEL above and below the lasing threshold current. Above
the lasing threshold current [Fig. 6(a)], the 6 x 6 spot beams
are observed. The iPMSEL emits rotationally symmetric pat-
terns simultaneously [30-33]; therefore, the 3 x 6 spot beams
[Fig. 2(a)] and their rotationally symmetric patterns are su-
perimposed to produce the 6 x 6 spot beams as depicted in
Fig. 2(e) (see Appendix B). Multiple X-shaped line patterns
below the lasing threshold current [Fig. 6(b)] are observed
and such directional patterns could be observed along with
the photonic band. Therefore, we measured the directional
emission from the iPMSEL below the lasing threshold current
(see Appendix C). Normally, the photonic band is obtained
by measuring the directional emission from the device (see
Appendix C). In principle, the photonic band below the light
line cannot be observed. However, as aforementioned, we
introduce the shift vector to obtain the vertical diffraction.
Therefore, a photonic band below the light line can be ob-
served as a result of the folding of the band.

Thus, we obtained the photonic band shown in Fig. 7(a).
Above the lasing threshold current, we obtained the photonic
band shown in Fig. 7(b), where the lasing wavelength is
highlighted for the same measurement method. By comparing
Figs. 7(a) and 7(b), we can determine the position where
lasing occurs [16], as each bright spot corresponds to a band
edge. Figures 7(c) and 7(d) represent the cross sections at the
lasing wavelengths using the dashed lines in Figs. 7(a) and
7(b), respectively. Compared to Fig. 6(a), the bright spots in
Figs. 7(b) and 7(d) correspond to the far-field patterns and
to Fig. 2(e) as well. The cross sections at other wavelengths
are shown in Fig. 8. Surprisingly, multiple replicated photonic
bands which are equal to the number of bright spots in the far-
field pattern were observed. As aforementioned, each bright
spot of the beam pattern corresponds to a band edge. Since
the band edge corresponds to the standing wave condition,

under sufficient gain these replicated multiple band edges
having the same wavelength form the lasing mode to emit the
designed image pattern. This is the operation mechanism of
the iPMSEL.

B. Photonic bands with different shift vectors

After this, we study a simple case to confirm the relation
between the shift vector and the replication of a photonic
band. The following study is discussed only for a simpli-
fied understanding. The simplest pattern is the spot pattern
placed at the center of the wave-number space, i.e., (0 deg,
0 deg). A shift vector V is then introduced to shift the output
wave front into the light cone (see [32] or Appendix B). We
fabricated the spot-pattern iPMSELs with different Vs. For
V = (1.00, 1.00) [ /a], the output pattern is a spot beam
perpendicular to the iPMSEL’s surface (see Appendix B).
This shift vector is the normally utilized in the iPMSEL
shown in Fig. 3. We have also investigated the iPMSEL with
V = (0.96, 0.96) [7 /a] and (0.92, 0.92) [ /a]. Notably, V =
(0, 0) or V= (2.00, 2.00) [ /a] corresponds to the case
without V, and we cannot observe any patterns below and
above the lasing threshold current.

Figures 9(a)-9(c) are the measured photonic bands of the
spot-pattern iPMSELs for the direction (0 deg, 0 deg) with
V = (1.00, 1.00) [rr/a], (0.96, 0.96) [x /a], and (0.92, 0.92)
[t /a], respectively. In Fig. 9(a), a band edge is observed at
the I' point. This iPMSEL was designed to work at the M
point of the square lattice; therefore, the plotted wavelength
range corresponds to the M point, and there is no band edge.
Since the phase of the shift vector V, which has a periodic
modulation, introduces another periodicity, a photonic band is
observed. Similar to the diffraction in periodic structures, the
diffraction in this case can be considered as follows:

ki=k +V, ey

where k; is the wave vector of the diffracted light wave, k;
is the wave vector of the input light wave, and V is the shift
vector. This suggests that the photonic band can be replicated
at the position where the shift in the wave-vector space from
the original photonic band is V.

Under the assumption that a holographic shift vector acts
similar to the reciprocal lattice vector, we can estimate the
position of the photonic band. Then, we compare these
experimental results with the theoretical estimates. There
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FIG. 7. Measured photonic band of the 6 x 6 multispot iPMSEL.: (a) cross section along the X-I"-M direction below the lasing threshold,
(b) cross section along the same line above the lasing threshold, (c) cross section along the I'-M direction in (a), and (d) cross section at the

lasing wavelength (dashed line) in (b).

are several methods for calculating the photonic-band struc-
ture. We estimate the wave number of the band edge by
calculating the dispersion relation for the square lattice with
an infinitesimally small modulation of the dielectric constant
(see Appendix D).

Figures 10(a)-10(h) represent the calculated photonic band
for an infinitesimally small sized 2D PC lattice modulated
with V values (a) (0, 0), (b) (1.00, 1.00) [ /al, (c) (0.96,
0.96) [ /a], and (d) (0.92, 0.92) [z /a] [Figs. 10(e)-10(h) are
the enlarged views of Figs. 10(a)-10(d), respectively]. The
case of V= (0, 0) in Fig. 10(a) corresponds to a normal
square-lattice PC. Around the frequency of 0.70 [c/a], there
exists a band edge at the M point [right side of Fig. 10(a)] and
no band edge at the I" point [left side of Figs. 10(a) and 10(e)].
However, for V = (1.00, 1.00) [ /a] in Fig. 10(b), the folded
band (red line) and the original band (black line) are in
symmetry, similar as that in [23,25]. By comparing Figs. 9 and
10(f)-10(h), we identify the wave vectors of the band edge.
This band edge has been folded from the M point and does not
originate from the I" point. Strictly speaking, photonic bands
that have shifted equal to the integer multiple combinations
of the reciprocal lattice vectors are simply superimposed and
appear to be a symmetric folded band when plotted in the
range of half of the elementary reciprocal lattice vector, i.e.,
the first Brillouin zone. Therefore, symmetric folding is a

special case of shifting. In general, a shifted band structure
is simply superimposed and not symmetrical, as shown in
Figs. 10(c) and 10(d). Thus far, many studies have reported
on the folding and shifting of photonic bands including a
supercell structure [18,19,23,25], a composite structure with
multiple periods [24], and an automated design of the PC
[21,22]. A modulated PCSEL [37] also adds a periodic shift
vector to the 2D lattice. Though Fig. 10 is an estimated for
an infinitesimally small modulation of the dielectric constant,
multiple band edge modes get degenerated. Normally, each
band edge mode has a different frequency under a finite di-
electric constant difference, as that observed in Fig. 9.

C. Photonic band replication in arbitrary wave vector

As a photonic band can be shifted in an arbitrary wave
vector by changing the magnitude of the shift vector, mul-
tiple replications in an arbitrary wave vector is our interest
of focus next. There are two approaches of the CGHs, based
on the diffraction theory: the bottom-up and the top-down
approaches. The bottom-up approach is to obtain a sum of
complex amplitude distribution for each direction based on
the idea of angular spectrum [34] which is supported by the
superposition principle. Meanwhile the top-down approach
is to obtain a multidirectional complex amplitude distribu-
tion at once via the idea of diffraction integral, and the GS
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FIG. 8. Cross sections of measured photonic bands of 6 x 6 multispot iPMSEL: (a) cross section along the X-I"-M direction below the
lasing threshold (CW 320 mA), (b)—(f) cross sections at the dashed line in (a) corresponding to 932.02, 935.03, 937.21, 938.21, and 941.46

nm, respectively.

method [36] has been adopted here for usefulness. Although
both methods lead to similar results, we have considered the
bottom-up approach here because it is intuitive to understand
the physics. Since lasing occurs in the band edge of the pho-
tonic band, it is possible to realize an arbitrary directional
beam. In the case of a single pair beam, the phase distribution
is simply periodic [37]. We shall discuss a more general case
that consists of more than two periods. The complex ampli-
tude distribution for a single directional plane wave is simply
expressed by the periodic function as

Ae® = A*T. )

Therefore, the phase distribution for a single directional
plane wave where the wave vector k = (k,, k,) is described
as follows:

¢ =kx + kyy~ 3

To add the other directional plane wave, the complex
amplitude distribution should be simply added based on the
superposition principle as follows:

Ac =D e, )
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where A is the amplitude term, ¢ is the phase term of the
complex amplitude, and # is the number of directional plane
waves.

Figure 11 describes this schematically. Figures 11(a)—
11(c) represent the phase distribution ¢ of three differ-
ent directions. Figures 11(d)-11(f) represent the Fourier
transform of Figs. 11(a)-11(c), respectively. The in-plane
counterpropagating waves of the standing wave are con-
sidered to calculate the beam pattern by substituting the
exponential function of Eq. (4) with the cosine function.
There is a single pair of spot patterns. Figure 11(g) represents
the phase distribution of the sum of the complex amplitude
distributions corresponding to Figs. 11(a)-11(c) where the
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amplitude term A,, equals 1. Figure 11(h) represents the phase
distribution obtained using the GS method for which the am-
plitude distribution is flat. Figures 11(i) and 11(j) represent
the Fourier transform of Figs. 11(g) and 11(h), respectively.
Comparing Figs. 11(i) and 11(j), the hologram obtained using
the GS method gives a similar result, as expected, and thus, it
is reasonable to explain the multiple band replication using
the idea of the shift vector. Figures 12(a) and 12(b) depict
the phase distribution for 3 x 6 spot beams, obtained using
the superposition of the plane waves and the GS method,
respectively. Figures 12(c) and 12(d) represent the Fourier
transform of Figs. 12(a) and 12(b), respectively. Also, in the
case of a complex pattern which contains many directional
waves, a hologram obtained using the GS method is effective
in explaining the complex amplitude distribution.

To summarize the band structures, Fig. 13 represents this
concept pictorially. In the case of a free space without any
air holes [Fig. 13(a)], dispersion relations for the incident
plane wave are linear [Fig. 13(b)]. In the case of the 2D
lattice [Fig. 13(c)], photonic bands are formed as a result
of the shifting of the dispersion relations by the elementary
lattice vectors [Fig. 13(d)] (see Appendix D). The shift vector
and inverse Fourier transformation of the target pattern work
as additional diffraction sources; the former is periodic,
whereas the latter contains multiple periods. In the special
case of the shift vector in which V = (1.00, 1.00) [ /a], air
holes are shifted periodically from the 2D lattice [Fig. 13(e)].
Owing to the diffraction effect of the shift vector, the photonic
band is shifted in the ['-M direction [Fig. 13(f)]. The black
and red lines indicate the original photonic band of the 2D
lattice and the replicated photonic band due to diffraction of
the shift vector, respectively. In this special case, the shifted
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FIG. 10. Calculated photonic bands of infinitesimally small modulations of the dielectric constant with different Vs: (a), (e) (0,0), (b), (f)
(1.00,1.00) [ /a], (c), (g) (0.96,0.96) [ /a], and (d), (h) (0.92,0.92) [7 /a].
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using the GS method. (j) Fourier transform of (h). Range of Fourier transform is —0.05 to 0.05 [27 /a] as in Fig. 2(e).

photonic band appears symmetric folding [Fig. 10(b)]. Note
that this symmetry only occurs when there is integer multiple
structure in which the integer multiply shifted structure is
same as the original one in real space. Therefore, in case
of V.=(0.96, 0.96) [ /a] or V= (0.92, 0.92) [ /a], the
photonic band is not symmetric [Figs. 10(c) and 10(d)].
In the case of holographically shifted air holes from the 2D
lattice [Fig. 13(g)], the photonic bands become more compli-
cated owing to the holographic diffraction effects [Fig. 13(h)].
The blue line indicates the replicated photonic band due to the
holographic diffraction effect. We note that holographic mod-
ulation replicates the photonic bands in a manner such that the
bright spots comprising a beam pattern coincide with the band
edges. Therefore, the band edge can be replicated simply by
implementing the holographic modulation at an arbitrary po-

sition. In general, a holographically shifted structure contains
many periods and the integer multiply shifted structure cannot
correspond to the original one in real space. Therefore, in this
case symmetric folding of the photonic band is not observed
as shown in Fig. 7(a). There are only shifted photonic
bands.

A noteworthy practical advantage of the holographic mod-
ulation is the preservation of information. In the conventional
method, the photonic band could be shifted by introducing
another periodic structure. This idea is feasible up to two
or three periods. For example, a photonic band under
light line can be observed by introducing another periodic
structure [17-19,23]. However, if many such structures are
superimposed into one structure, information would be lost
owing to overlapping of the structures. Contrarily, by utilizing
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holographic modulations an arbitral number of replications is
possible.

Finally, we elaborate as to why we were unable to notice
these mechanisms in our previous report [30]. The lasing band
edges of each spot were not observed in the previous work
[30] because of two reasons. The first reason is that too many
spots in the beam patterns weakened the diffraction of each
spot, and the second reason is choosing the I"-point band edge
which accompanies a bright central spot noise which caused a
hindrance in observing the band structure of each spot.

IV. CONCLUSION

We investigated the band structure of the iPMSEL and
found the photonic band shifts and replicates using the holo-
graphic modulation of the air holes. The photonic band
normally shifts because of diffraction caused by the periodic
structure; therefore, to shift the photonic band, a different
periodic structure should be added, such as a composite
PC or supercell structure. However, when the number of
periods increases periodic information decreases owing to su-
perposition. From this point of view, holographic modulation
provides a different degree of freedom to engineer the pho-
tonic band as it can replicate the band structure in an arbitrary
wave vector for any arbitrary number. This just enables the
working of the arbitrary pattern laser iPMSEL as a practical
application [38]. It should be emphasized that this replication
approach can be applied not only to PCs but also to other
periodic structures which form a band structure. We believe
that this finding will enable the engineering of band structures
in various fields.
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FIG. 13. Schematic of the photonic band: (a) free space without
air hole, (b) dispersion relation of free space, (c) air holes arranged in
a 2D lattice, (d) photonic band of the 2D lattice (black lines), (e) air
holes periodically shifted from the 2D lattice by the shift vector, (f)
photonic band of periodically shifted air holes from the 2D lattice by
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holes (blue lines). The plotted range is first Brillouin zone of square
lattice.
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APPENDIX A: DETOUR-PHASE METHOD

The detour-phase method was proposed by Brown and
Lohmann in 1966 [35]. A binary window pattern is placed
over the 2D cells, and each window is laterally shifted accord-
ing to the phase of the complex amplitude obtained from the
Fourier transform of the target pattern. When a plane wave is
irradiated on the 2D window array, a holographically modu-
lated wave front is obtained to form the desired beam pattern.
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(For a detailed explanation of the detour-phase method, see
[35].) The concept map of the detour-phase method is shown
in Fig. 14(a). A shifted window array has many windows
through which light can be transmitted. Cells are placed at
regular intervals a, and the dashed horizontal lines indicate
the centers of the cells. Each cell has one window, and each
window is shifted corresponding to the phase and size of the
window, which in turn is varied corresponding to the ampli-
tude of the complex amplitude distribution. Therefore, when
a plane wave is irradiated from the left side of the shifted
window array, a modulated wave front is output along the right
side. A front view of the shifted window array is shown in
Fig. 14(b). Each cell has one window, which is shifted against
the center of the cell, corresponding to the cross point of the
dashed lines. Using the detour-phase method, the transmis-
sive window pattern and plane-wave source are separated. In
the iPMSEL, however, we integrate them by introducing the
phase-modulating layer, which enables concurrent lasing and
spatial phase change.

APPENDIX B: WORKING MECHANISM
AND SHIFT VECTOR OF iPMSEL

It is reasonable to assume that the in-plane resonance of the
iPMSEL is similar to that of the PCSEL since the positional
hole shifts are small. Owing to the diffraction of the 2D PC
at the M-point band edge, four basic in-plane light waves are
formed in the diagonal directions, as shown in Fig. 5(c). These
basic light waves are coupled and form a 2D standing wave
that acts as an in-plane resonance cavity. A surface normal
diffraction is prohibited at the M-point band edge; therefore,
the zero-order beam in the surface normal is removed. In con-
trast, the scattered light wave at each hole is retarded/proceeds
by the local positional shift of the holes, such that the wave
fronts of the scattered light waves are locally modulated in
accordance with the angle ¢(x,y). As shown in Fig. 3, the
phase distribution is obtained using the sum of the original
phase distribution ¢ (x, y) and the additional phase distribution
¢4 (x,y). The additional phase distribution is expressed as

$a(x,y) =V-r=Vx+Vy, (B1)

where x=MNa N,=0,1,2,..)), (N, =
0,1,2,...),and V is the shift vector.

y=Nya

Rotating arm

Multi-mode optical fiber

Multichannel
spectrometer

FIG. 15. Setup of the photonic-band measurement scheme.

When V is defined as follows:

—OE)

it completely cancels the in-plane wave-vector component of
the basic light waves [green arrow in Fig. 5(c)]. In this case,

Pa(x, y) = mw(£N: £ Ny). (B3)

The ¢,(x, y) is a mosaiclike pattern according to Eq. (B3)
and tilts the target beam patterns from the direction along the
in-plane basic light waves to the surface normal, as shown in
Fig. 5(e). Therefore, the total phase distribution is expressed
as ¢(x,y) + ¢, (x, y), which enables the projection of the 2D
beam patterns out of the plane without the surface normal
zero-order beam.

APPENDIX C: SETUP FOR PHOTONIC-BAND
MEASUREMENT

We can measure the photonic band using the directional
distribution of the spectra [15,16,20]. Figure 15 depicts the
setup for the photonic-band measurements. The measurement
setup consists of a multichannel spectrometer (HORIBA,
iHR320), multimode optical fiber, lens, and rotating arm.
Emissions from the iPMSEL in a specific direction were mea-
sured using a multichannel spectrometer through a multimode
optical fiber. We have defined the spherical polar coordinates
around the device. The polar angle 6, and azimuthal angle
0.0 have been transformed into the normalized wave vector
(ky, ky) in the reciprocal space as follows:

ky = (a/A\)sinby oSO, (C1)

ky = (a/X’)sinGgy sinbry, (C2)

where k, and k, are the wave vectors parallel to the I'-X
and I'-Y directions, a is the lattice constant, and A is the
wavelength of light in air. The measurements were carried
out under continuous wave operation at the room temperature
(25°C).

To obtain the angular dependence of the device at the
lasing wavelength [Figs. 7(c), 7(d), and 8(b)-8(f)], the mea-
surements along each direction were stored in 3D arrays as
(kx, ky, A). Then, a horizontal cross section through this array
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FIG. 16. Reciprocal lattice space of the square-lattice PC.

at a desired wavelength yielded the angular dependence of the
device. The color scale indicates the light intensity.

APPENDIX D: DISPERSION RELATION FOR THE
SQUARE LATTICE WITH AN INFINITESIMALLY SMALL
MODULATION OF THE DIELECTRIC CONSTANT

To estimate the wave number of the band edge, we cal-
culate the dispersion relation for the square lattice with an
infinitesimally small modulation of the dielectric constant
[5]. The dispersion relation of a 2D PC with a small spatial
variation of the dielectric constant can be represented by the

Frequency (c/a)
© © o =~ = = =
= [e2) o] o N B »

o
N

0

05 04 03 02 01 O 01 02 03 04 05 06 07
X M

r
Wave vector (2n/a)

FIG. 17. Dispersion relation for the square lattice with infinitesi-
mally small modulations of the dielectric constant in air.

folding of the dispersion line of the uniform material, ® = vk,
into the first Brillouin zone [5]. Figure 16 represents the re-
ciprocal lattice space of a square-lattice PC, where the large
circles indicate the I' points and the small circles indicate
the X and M points, as illustrated in Fig. 4(a). We plot the
dispersion relation along the I'-X and I'-M directions. For
example, the dispersion relation along the I'-X direction in
Fig. 16 (route indicated with a red arrow) is indicated with the
red line in Fig. 17.

In this case, w = vk,. Similarly, the dispersion relation
along the blue arrow is indicated with the blue line in Fig. 17.
In this case, w = vk, and k; is

2 2
ko = k§+<7”>.

This line has a small slope owing to the square root nature.
To consider multiple diffractions, we simply shift the band by
an integer multiple of an elementary reciprocal lattice vector
and plot within the range of the first Brillouin zone.
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