# High resolution atmospheric-pressure mass spectrometry imaging of biological samples using a matrix-free ionization-assisting DIUTHAME foil

# Max A. Mueller<sup>1</sup>, Dhaka R. Bhandari<sup>1</sup>, Kerstin Strupat<sup>2</sup>, Bernhard Spengler<sup>1</sup>

### Introduction

- A key characteristic of mass spectrometry imaging (MS is the achievable lateral resolution
- For matrix assisted laser desorption/ionization (MALDI) MSI, subcellular resolution was shown<sup>1</sup>
- Sample preparation is crucial for high resolution MALI MSI
- Matrix imperfections or inhomogeneities have a higher negative influence on image quality
- Nanostructured surfaces can also assist desorption/ionization (SALDI), without being ionized<sup>2</sup>

#### Experimental

- DIUTHAME (<u>Desorption</u> <u>lonization</u> <u>using</u> <u>through</u> <u>hole</u> alumina membrane, Hamamatsu Photonics, Japan)<sup>3</sup>
- Premanufactured 5  $\mu$ m thin alumina membrane
- Nanostructured with Ø200 nm through-holes
- AP-SMALDI5 AF (TransMIT GmbH, Giessen, Germany) home-built ion source
- Coupled to Q Exactive HF or Q Exactive (Thermo Fish Scientific, Bremen, Germany), respectively
- Imaging data analysis was carried out with Mirion<sup>4</sup>

#### Acknowledgements

- Hamamatsu Photonics for providing DIUTHAME sample
- Prof. Dr. W. Kummer and Dr. G. Petschenka (Justus Liek University Giessen, Germany) for providing mouse orga and Spodoptera littoralis samples, respectively
- Financial support by the German Research Foundation (DFG) under Grant Sp314/13-1 and INST 162/500-1 FU
- TransMIT GmbH for technical support
- M.A.M. thanks the Fond der Chemischen Industrie for Ph.D. scholarship

## Literature

- (1) Kompauer, M.; Heiles, S.; Spengler, B., Nature methods 2017, 14, 90–96.
- (2) K. P. Law; James R. Larkin. Anal Bioanal Chem 2011, 399, 2597–2622.
- (3) Naito, Y. et al., Rapid communications in mass spectrometry, **2018**, 32, 1851–1858.
- (4) Paschke, C. et al., Journal of the American Society for Mass Spectrometry 2013, 24, 1296–1306. (5) Sud, M. et al., Nucleic Acids Research **2006**, 35, D527-32

|          | Sample preparation                                                                                                                                  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| ISI)     | <ul> <li>DIUTHAME can be placed self-adhesively on glass slides<br/>(Figure 1)</li> </ul>                                                           |
|          | No pressure, force or solvent is applied                                                                                                            |
| DI       | <ul> <li>Tissue sections must be frozen and &gt; 50 μm thick (Figure 2)</li> <li>Microscopic images of the sample must be taken with the</li> </ul> |
|          | membrane attached                                                                                                                                   |
|          | • No histological staining possible, since DIUTHAIVE cannot be                                                                                      |
|          | Mass spectra from tissue                                                                                                                            |
| _        | • In our MSI setup, DIUTHAME worked in positive ion mode                                                                                            |
|          | No signal from tissue in negative ion mode, independent<br>organism investigated                                                                    |
|          | <ul> <li>Negligible background signal for DIUTHAME (NL ≈ 5)</li> </ul>                                                                              |
|          | <ul> <li>One order of magnitude lower signal intensity for DIUTHAIN<br/>than for MALDI on mouse brain tissue (Figure 3)</li> </ul>                  |
| or       | Independent of tissue type and origin                                                                                                               |
|          | Phospholipids annotated to DIUTHAMLE signals by LIPIDM<br>are mostly a subset of those found by MALDI (Figure 4)                                    |
| sher     | <ul> <li>Phospholipid signal composition (classes, adducts, ratios)</li> </ul>                                                                      |
|          | comparable between MALDI and DIUTHAME                                                                                                               |
|          | MSI results                                                                                                                                         |
| les      | <ul> <li>Comparable results between DIUTHAME and MALDI (Figure</li> </ul>                                                                           |
| gan      | <ul> <li>Up to 5 µm lateral resolution achievable with DIUTHAME</li> <li>Higher contrast and homogeneity for DIUTHAME</li> </ul>                    |
|          | Higher number of images available for MALDI                                                                                                         |
| n<br>JGG | <ul> <li>Applicable on many tissue types from different biological or<br/>(Figure 6)</li> </ul>                                                     |
| r a      | a) (b) m/z 616.1769                                                                                                                                 |



Scale bars: 1 mm.

1) Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Giessen, Germany 2) Thermo Fisher Scientific, Bremen, Germany

Scanned a after MSI experim

Effective

area

Metal frame, adhesive at the backside

ME cannot be removed

1: Photo of a DIUTHAME substrate attached to a glass slide. The tissue is not visible through the membrane.

e ion mode independent of

L ≈ 5) for DIUTHAME

als by LIPIDMAPS<sup>5</sup> I (Figure 4) icts, ratios)



Figure 3: Comparison of 100 summed up mass spectra from mouse brain cerebellum measured by DIUTHAME (black) or MALDI (red).

MALDI (Figure 5) h DIUTHAME

biological origin





JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

possible **DIUTHAME** (black) attachment on a sample (blue). a,b) Tissue section is too thin no or incomplete attachment. section > 50 µm, complete attachment

from MSI experiments on mouse brain cerebellum for DIUTHAME and MALDI, respectively. Signals are present in > 5 % of all pixels and annotated with a mass error

on thinner tissue sections

Ionization efficiency of DIUTHAME should be improved