Development of blotting method using DIUTHAME for imaging MS

Hamamatsu Photonics K.K.¹, Teikyo University², The Graduate School for the Creation of New Photonics Industries³ Masahiro Kotani¹, Takayuki Ohmura¹, Akira Tashiro¹, Hirofumi Enomoto², Yasuhide Naito³

Introduction

We have developed DIUTHAME (Desorption Ionization Using Through Hole Alumina MEmbrane) as an alternative to matrices. Ionization process using DIUTHAME and a comparison of the features with MALDI are shown in Fig.1 and Table 1.

Fig.1: Ionization process using DIUTHAME

In MALDI imaging MS, it's recommended to slice a sample section in less than 10 micrometers thickness. However, some samples are difficult to cut very thinly. For example, raw strawberry which possesses high moisture content is difficult to be sliced into a thin section especially the sample becomes larger (referring to Table 2). This study aims to examine imaging MS using DIUTHAME with a blotting method which doesn't require thin sectioning.

2. Methods

To conduct imaging MS, a raw strawberry was cut in half with knife under the room temperature. Then DIUTHAME chip was put on the cut surface and the contained materials on the strawberry were blotted.

Fig.2: Workflow of blotting onto DIUTHAME chip in imaging MS

Table 1: a comparison of the features with MALDI

Item	DIUTHAME	MALDI
Background noise	None	Matrix noise appears
Ease of handling	Easy	Expertise is required
Reproducibility	High	Not so high
Spatial resolution	High	Not so high
onization of large molecules	Possible depending on samples	Possible

Table 2 : Strawberry shipping standard

Standard	Single grain weight [g]	
DX	27	Difficult to this sectioning
3L	25	
2L	15	
L	11	
Μ	9	
S	7	

Fig.5: Imaging results obtained by different cutting directions

3-1. Results: positive/negative mode

Fig.4: Imaging analysis of strawberry using blotting onto DIUTHAME chip

3-2. Results: effect of cutting direction

Blotting onto DIUTHAME chip

From the results of imaging MS of blotting onto DIUTHAME chip, the distribution of:

4. Conclusion

- Imaging MS results of blotting onto **DIUTHAME** chip were consistent with MALDI imaging MS using frozen section.
- We suggest that the blotting method using DIUTHAME chip is very easy and effective for imaging MS of those which thin sectioning is difficult for.

References

Enomoto et al., *J Agric Food Chem*, 66, 4958-4965, 2018.

For inquiries about DIUTHAME, Visit at **Booth #110**