
Imaging solutions: 
Driving agri-food tech 
towards sustainability
Today's global food production system faces significant challenges crucial to 
sustaining our planet's fast-growing population. This growth requires a significant 
increase in the food supply, with estimates suggesting a need to boost food 
production by up to 70% to meet rising demand. At the same time, the need for 
sustainable farming practices has never been more critical. The agriculture sector 
contributes approximately 24% of global greenhouse gas emissions and plays a 
significant role in water usage and habitat loss. 

These environmental impacts conflict with the European Union's sustainability goals, 
which aim for a climate-neutral continent by 2050. Climate change intensifies the 
challenges faced by the agri-food sector, heightening crops' vulnerability to pests, 
diseases, and extreme weather events. Additionally, roughly one-third of all food 
produced for human consumption is lost or wasted. To address these challenges, 
balancing increased food production with environmental sustainability goals is 
essential for the future of global food systems, highlighting the need for innovative 
approaches and solutions.

Photonics at the heart
of the solution

Photonics and imaging technology, specifically, are crucial 

to addressing these challenges, offering innovative tools 

that transform the agri-food tech sector. Photonics-based 

instruments emit light toward a target, interacting with the 

material in ways specific to its composition and structure. 

The light may be absorbed, reflected, transmitted, or cause 

the material to fluoresce. Advanced sensors capture these 

interactions, providing detailed information about the tar-

get's chemical, physical, and biological makeup through 

sophisticated analysis. 
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Table 1. Overview of non-destructive methods for evaluating fruit ripeness and their correlation with internal characteristics. [1]

Abbreviations: SSC (Soluble Solids Content), DM (Dry Matter), MC (Moisture Content), TTA (Titratable Acidity), TSS (Total Soluble Solids), and WC 

(Water Content). Each numbers in the table are referenced in the reference section at the end of the article.

Colorimetry Visible 
imaging Spectroscopy Fluorescence Hyper spectral 

imaging
Multispectral 

imaging

Apple Color [21] Color [22] Chlorophyll [23], Anthocyanins [24], Carotenoids 
[24], Favonols [25], SSC [26], Firmness [27]

Chlorophyll [28], Anthocyanins 
[29], Flavonols [29],

 Firmness [29], SSC [29]

Firmness [30], 
SSC [31]

Firmness [32], 
SSC [33]

Pear Firmness [34], SSC [35] SSC [36]

Peach Color [37] Firmness [38], Chlorophyll [39], Color [37] Firmness [40] Firmness [41] Firmness [9],  
SSC

Avocado MC [42], DM [42] DM [43]

Nectrarine Color [44] SSC [45], Firmness [45] Firmness [40]

Mango Color [46] DM [47], Starch [48], SSC [47], 
Color [49], Firmness [50]

Firmness [8], SSC 
[8], WC [8]

Banana Color [51] Color [51] TSS [52], Chlorophyll [53] Firmness [54], 
TSS [54]

Tomato
Color [55], 

Firmness [56], 
TSS [57]

Color [58], 
Firmness [59] Lycopene [60], SSC [61] Chlorophyll [62] Phenollic [63], 

Lycopene [63]

Melon SSC [64]

Mandarin TTA [65], SSC[66], Firmness [67], DM [68]

Cherry Color [69] Firmness [70], SSC [71]

Strawberry Color [72], TTS [73], Firmness [72], TTA [73] Firmness [74], TSS 
[75], TTA [75]

SSC [76], 
Firmness [77]

Apricot SSC [78), Firmness [78], TTA [78]

Kiwifruit TSS [79], SSC [79], Firmness [80], DM [81], 
Starch content [79]

Persimmon SSC [82] Firmness [83]

Grape SSC [84], TTA [84], Anthocyanin [85] Chlorophyll [86], Anthocyanin 
[86], TSS [86], Flavonols [87]

SSC [88], 
TTA [88]

Pineapple Color [89] DM [90], SSC [91]

Plum Firmness [92], SSC [93], Color [92]

By leveraging light-matter interactions, photonics en-

ables precise, efficient, and sustainable management 

practices in the agri-food sector, promoting higher 

yields, reduced waste, and enhanced food safety.

The following non-destructive techniques are instru-

mental in advancing the agri-food tech sector, providing 

precise and efficient tools for assessing and improving 

the quality, safety, and sustainability of agricultural prod-

ucts and food:

1. Colorimetry & visible imaging 

2. Visible & near-infrared (VNIR) spectroscopy 

3. Fluorescence imaging

4. Hyperspectral imaging 

5. Multispectral imaging

The main benefits of photonic solutions are their non-contact, fast, and primarily non-destructive testing nature. This 

non-invasive approach allows for real-time monitoring and inspection of agricultural products and foodstuffs, enabling 

the detection of diseases, nutritional content, moisture levels, and other critical parameters without compromising sam-

ple integrity, as shown in Table 1 below. 
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1. Colorimetry & visible imaging

Colorimetry and visible imaging are essential techniques 

in the agricultural and food technology (agri-food tech) 

sector. They provide a straightforward, non-destructive 

means of assessing the quality and characteristics of 

food and farming products by measuring the intensity 

of light reflected from an object in the visible spectrum 

(approximately 400-700 nm), offering insights based on 

color variations and patterns. 

Sensor technological advancements have enabled a shift 

from human evaluation to measurements in the CIELAB 

color space (L*, a*, b*), which offers highly accurate and 

consistent color measurements. The rise of RGB sen-

sors, capable of simultaneously measuring RGB colors 

on a 2-D area with digital output, has further boosted col-

orimetry and visible imaging by offering a straightforward 

and cost-effective setup for many applications (see, for 

example, Hamamatsu S9706 [2])

In agri-food tech, colorimetry and visible imaging are ex-

tensively used for quality control and sorting processes. 

For example, in the fruit and vegetable industry, these 

technologies enable the automated sorting of products 

based on ripeness, color uniformity, and surface defects. 

In apple orchards, colorimetry determines the optimal 

harvest time by assessing the apple color development, 

ensuring that only fruits meeting specific maturity crite-

ria are picked. This maximizes the quality and taste of 

the harvested fruits and reduces waste by minimizing 

the picking of underripe or overripe produce. Similarly, in 

grain quality assessment, visible imaging helps to identify 

and segregate grains infected by fungi or showing signs 

of sprouting, thereby improving the safety and quality of 

the grain supply.

Graph 1: Typical progressive change of reflectance spectra at 

different ripening stages of tomato [3] 

2. Visible & near-infrared 
spectroscopy

Compared to the previous technique, visible and near-in-

frared (VNIR) spectroscopy offers a more nuanced and 

in-depth analysis tool in the agri-food tech sector. VNIR 

spectroscopy extends analysis into the near-infrared range 

(approximately 400-2500 nm), tapping into the unique 

ways materials interact with light across both visible 

and NIR wavelengths. This spectral range is particular-

ly insightful because molecular vibrations and overtones, 

indicative of chemical bonds in organic compounds, 

strongly absorb NIR light, allowing precise identification of 

chemical compositions and concentrations within agricul-

tural products and foods.

VNIR spectroscopy enables the detection and quantifi-

cation of organic compounds and moisture content with 

high sensitivity and specificity. For example, in precision 

agriculture, VNIR spectroscopy can analyze crop foliage 

to determine nitrogen levels, directly impacting fertilization 

decisions crucial for crop yield optimization.

As seen in Graph 1 below, in food quality assessment, 

VNIR spectroscopy is used to quantify the sweetness of 

fruits such as apples and berries by measuring sugar con-

tent directly through their skin. This allows for sorting into 

different quality grades without damaging the produce.

The same physical principle can be used to study the 

in-line defectivity of food products, combining both sen-

sors working in the visible spectrum (Hamamatsu CCD 

Sensors[4]) and sensors working in the infrared spectrum 

(Hamamatsu InGaAs Sensors[5]).

Hamamatsu's S9706.

http://www.hamamatsu.com
https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s9706_kpic1060e.pdf
https://www.hamamatsu.com/eu/en/product/optical-sensors/image-sensor/ccd-cmos-nmos-image-sensor/line-sensor/for-industry.html
https://www.hamamatsu.com/eu/en/product/optical-sensors/image-sensor/ccd-cmos-nmos-image-sensor/line-sensor/for-industry.html
https://www.hamamatsu.com/eu/en/product/optical-sensors/image-sensor/ingaas-image-sensor/ingaas-linear-image-sensor.html
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Graph 2: Fluorescence spectroscopy enabling toxin 
detection[7]

Thus, VNIR spectroscopy's ability to provide rapid, 

non-destructive analysis across various samples makes 

it an invaluable tool for real-time monitoring and quality 

control in food production. 

3. Fluorescence imaging

Building on the depth of analysis provided by VNIR spec-

troscopy, fluorescence imaging introduces a dynamic di-

mension to the agri-food tech sector's toolkit. Fluorescence 

imaging relies on the ability of certain substances to absorb 

light at one wavelength and emit it at another, longer wave-

length. To detect even small amounts of markers, accurate 

and highly sensitive sensors at different wavelengths are 

mandatory, like Hamamatsu InGaAs area sensors [6].

Fluorescence imaging applications in agri-food tech range 

from detecting microbial contamination in food products 

to assessing plant health. For instance, specific patho-

gens on fruit skins can be identified through their distinct 

fluorescence signatures, enabling early detection of spoil-

age and contamination without physical contact. Similarly, 

fluorescence imaging can identify areas of stress in crops 

caused by drought or disease by observing changes in 

chlorophyll fluorescence, which correlates with the plant's 

photosynthetic activity and overall health.

4. Hyperspectral imaging

With modern sensors, it is now possible to combine the 

aforementioned techniques and collect a complete con-

tinuous spectrum for each pixel, using it for hyperspectral 

imaging. This comprehensive spectral data enables the 

detailed characterization of agricultural products and 

foods' chemical and physical makeup by detecting subtle 

differences in light absorption and reflection patterns. It 

can identify and quantify various substances and con-

ditions, from crops' moisture content and protein levels 

to subtle signs of diseases and nutrient deficiencies not 

visible to the naked eye.

In precision agriculture, hyperspectral imaging mounted 

on unmanned aerial vehicles (UAVs) can map variability 

in soil properties across a field, enabling targeted fertil-

A particularly impactful application has been the rapid 

screening of mycotoxins in grains and nuts, posing signif-

icant health risks. Fluorescence imaging can detect these 

toxins with high sensitivity, often enabling detection lev-

els down to parts per billion. This capability significantly 

enhances food safety protocols, allowing for the precise 

identification and removal of contaminated products from 

the supply chain.

Hamamatsu's InGaAs area sensors

Hamamatsu's CCD sensors
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ization and irrigation that enhance crop yield and reduce resource use. In food quality assessment, this technology 

can detect foreign bodies or contamination, such as bits of plastic or metal, and monitor the freshness and ripeness of 

produce without damaging it.

Graph 3: Hyperspectral imaging assessment of different coffee bean types.

Hamamatsu's Energetiq tuneable light sources (LDTLS®) and InGaAs cameras were utilized to demonstrate the imaging.

Due to the level of detail provided by hyperspectral 

imaging and the availability of integrated hyperspec-

tral cameras, such as the SXGA InGaAs Camera [8], its 

application is continually expanding. It offers a potent 

tool for advancing the efficiency, sustainability, and 

safety of food production.

Multispectral imaging's balance between spectral 

detail and operational simplicity makes it an invaluable 

tool in agri-food technology. Its focused, rapid analy-

sis capabilities facilitate sustainable farming practices 

and enhance food quality.

Imaging tools are critical to a more sustainable agri-food tech sector

As global food demands rise and the need for sustainable agriculture intensifies, imaging technologies emerge as 

essential allies in the agri-food tech sector. These technologies serve a dual purpose: enhancing productivity and sus-

tainability in food production and processing. They enable non-destructive, precise analysis of crops and food products, 

offering valuable insights into quality, safety, and environmental impact. They facilitate crop health monitoring, resource 

optimization, and waste reduction and address critical challenges in the agri-food sector. Integrating imaging technolo-

gies is key to achieving higher yields, reducing environmental footprint, and ensuring food safety and quality.

As these technologies evolve and become more accessible, they will play an increasingly significant role in sustainably 

meeting the world's food production needs, addressing immediate agricultural challenges, and paving the way for future 

advancements in global food supply and environmental care.

Please contact Hamamatsu Photonics Europe for advice on your agri-food needs: info@hamamatsu.eu

Hamamatsu's SXGA InGaAs Camera

http://www.hamamatsu.com
https://www.hamamatsu.com/eu/en/product/cameras/ingaas-cameras/C16741-40U.html
mailto:info%40hamamatsu.eu?subject=InGaAs%20sensor%20for%20Agriphotonics%20-%20article%202407
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