

Real-Time Water Quality Monitoring through UV-Vis Spectroscopy

Water analysis, thanks to techniques like **UV-Vis Spectroscopy**, lies at the intersection of environmental sustainability, public health, and industrial innovation. In a world affected by climate change, population growth, and increasing pressure on natural resources, the demand for precise, scalable, and **real-time water quality monitoring** has become paramount. Beyond its scientific relevance, water analysis is now a competitive asset for industries and public authorities committed to achieving ESG goals and regulatory compliance.

Water Treatment Technologies

Recent technological advancements have transformed traditional approaches. The latest modern tools such as Al-powered predictive analytics, digital twins (virtual models that accurately replicate real-world physical systems, facilities, or processes), and Industrial Internet of Things (IIoT) platforms now enable dynamic, digital optimization of treatment processes, early detection of contaminants, and energy-efficient operations [1].

These innovations are reshaping the water sector, offering enhanced operational intelligence and resilience against extreme conditions.

A notable example is the ultrafiltration plant in Corleone, Sicily, which demonstrated the effectiveness of advanced membrane technologies in producing reclaimed water for agricultural and industrial utilization. The facility achieved Class A water quality under EU Regulation 2020/741, adhering to strict standards for E. coli, turbidity, and total suspended solids [2].

These developments open new avenues for solutions that offer operational efficiency, sustainability, and competitive advantages. Water analysis instrumentation, from laboratory spectrometers to cloud-integrated, IoT-enabled

sensors, is increasingly central to industrial decision-making. The global market for water analysis instruments is projected to grow from \$4.1 billion in 2025 to \$7.1 billion by 2035, driven by regulatory pressure and the need for automated, real-time monitoring [3].

Water Analysis Techniques

Effective water quality management relies on a suite of analytical techniques, each tailored to specific monitoring needs and operational contexts. The evolution from traditional laboratory methods to advanced digital solutions reflects the sector's drive for greater accuracy, efficiency, and real-time insight^[3].

Laboratory-Based Analysis

Laboratory-based methods remain foundational for establishing baseline water quality and ensuring regulatory compliance. These techniques are typically used for periodic, high-precision measurements, including:

- pH, turbidity, and conductivity: Measured using benchtop meters to assess general water quality.
- Heavy metals (e.g., lead, cadmium, mercury): Detected via Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

- Organic pollutants: Analyzed using Gas Chromatography-Mass Spectrometry (GC-MS).
- Microbial content: Assessed through membrane filtration and culture-based techniques.

While these methods provide robust and reliable data, they are often limited by the need for sample collection, transport, and processing time^[4].

Sensor-Based Real-Time Monitoring

Recent advances have enabled the deployment of IoTenabled, multi-parameter probes for continuous, on-site monitoring. These sensors are installed at critical sampling points and can measure^[5,6]:

- Dissolved oxygen (DO)
- Nitrate and phosphate concentrations
- Temperature and flow rate

Data from these sensors is transmitted to cloud-based dashboards, allowing for remote access, trend analysis, and immediate response to anomalies. This approach supports proactive water management and rapid decision-making.

Advanced Digital Techniques

To further enhance predictive capabilities and operational efficiency, digital technologies are increasingly integrated into water analysis workflows^[1,4]:

- Machine learning models are trained on historical and real-time data to forecast contamination events and optimize treatment processes.
- **Digital twins**—virtual models of treatment plants simulate process changes and support scenario planning.
- Edge computing reduces latency in sensor data processing, enabling faster detection and response to water quality issues.

By combining laboratory precision, real-time sensor data, and advanced analytics, organizations can achieve comprehensive water quality monitoring^[5]. This integrated approach not only ensures compliance and operational excellence but also supports broader sustainability and public health goals.

Spectral Analysis with Optical Technologies from Hamamatsu Photonics

In addition to biological and chemical analyses, which typically require laboratory testing and the use of reagents, recent optical technologies enable on-site, real-time analysis without altering or contaminating the sample.

By analyzing light across different wavelengths, such as with UV-Vis spectroscopy techniques [6], it is possible to extract valuable information about both the presence of specific agents and the turbidity of the water. In this domain, Hamamatsu Photonics offers a comprehensive portfolio of mini-spectrometers and components tailored to diverse analytical needs:

- Mini-spectrometers for full-spectrum analysis (UV and visible)
- CCD and CMOS image sensors
- Photodiodes, covering the UV to infrared spectrum

Particularly noteworthy in UV spectrum analysis are the S12742^[7] and S16014^[8] photodiode families, designed with specific filters targeting wavelengths at 220 nm, 254 nm, and 275 nm, ideal for detecting pathogens and organic compounds.

Hamamatsu's S12742 and S16014 photodiodes.

To complete the solution offering, these detectors can be paired with Xenon flash lamps, providing a stable and highintensity light source for sophisticated analytical applications. The evolution of water quality monitoring has been significantly enhanced by the integration of advanced technologies, particularly those offered by Hamamatsu Photonics. The capability to conduct real-time, on-site analysis without compromising sample integrity marks a pivotal shift in how we approach water quality assessment. Hamamatsu's range of optical technologies enables comprehensive spectral analysis across the UV and visible ranges. This not only facilitates the detection of pathogens and organic compounds but also contributes to the overall efficiency and effectiveness of water treatment processes.

As the global demand for sustainable water management grows, leveraging these techniques will be crucial for industries and public authorities alike. With real -time monitoring and portable instrumentation, organizations can achieve higher operational standards, ensure regulatory compliance, and make strides toward their environmental

2|3

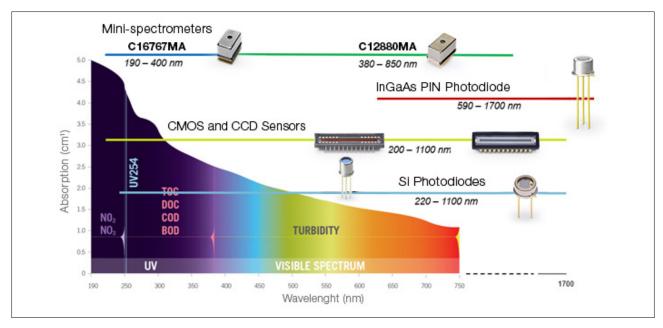


Figure 1: Hamamatsu detectors for water analysis, covering UV to VIS spectrum. Products depicted: Mini-spectrometers, InGaAs PIN photodiodes, CMOS and CCD sensors, silicon photodiodes.

and sustainability goals. Ultimately, the integration of these technologies will help protect our vital water resources and promote public health in an increasingly challenging environment.

For more information on our UV-Vis spectroscopy solutions for water quality monitoring, please visit www.hamamatsu.com or contact us at info@hamamatsu.eu

References

- [1] Idrica, "Water Technology Trends 2025," 2025. [Online]. Available: https://www.idrica.com. [Accessed: 7 October 2025].
- [2] M. Carnesi, A. Cosenza, D. Calantoni, M. Ferrante, and G. Mannina, "An innovative risk assessment framework for water reuse: The case study of Corleone (Italy)," *J. Environ. Manage.*, vol. 349, p. 125090, Mar. 2025, doi: 10.1016/j.jenvman.2025.125090. [Accessed: 23 October 2025].
- [3] Future Market Insights, "Water Analysis Instrumentation Market Growth & Trends, 2025–2035," Future Market Insights, Oct. 2025. [Online]. Available: https://www.futuremarketinsights.com/reports/water-analysis-instrumentation-market. [Accessed: 23 October 2025]
- [3] StartUs Insights, "Top 10 Water Treatment Trends in 2025," 2025. [Online]. Available: https://www.startusinsights.com. [Accessed: 7 October 2025].
- [4] "What are the latest advancements in water quality testing technology," 2025. [Online]. Available: https://sbnsoftware.com/blog/what-are-the-latest-advancements-in-water-quality-testing-technology. [Accessed: 7 October 2025].
- [5] "The top eight technological trends set to shape water management in 2025," 2025. [Online]. Available: https://www.watermagazine.co.uk/2025/03/26/the-top-eight-technological-trends-set-to-shape-water-management-in-2025. [Accessed: 7 October 2025].
- [6] "Monitoring water quality: a challenge for spectroscopic technology," Nov. 2023. [Online]. Available: https://www.hamamatsu.com/eu/en/news/featured-products and technologies/2023/monitoring-water-quality.html. [Accessed: 7 October 2025]
- [7] Hamamatsu Photonics, Si photodiode S12742-22 [Online]. Available: https://www.hamamatsu.com/eu/en/product/optical-sensors/photodiodes/si-photodiodes/S12742-220.html [Accessed: 7 October 2025]
- [8] Hamamatsu Photonics, Si photodiode S16014-220 [Online]. Available: https://www.hamamatsu.com/eu/en/product/optical-sensors/photodiodes/si-photodiodes/S16014-220.html [Accessed: 7 October 2025]