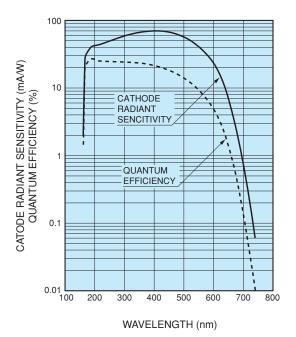
HAMAMATSU

PHOTON IS OUR BUSINESS

PHOTOMULTIPLIER TUBES R7447 R7447P (For Photon Counting)

FEATURES

Spectral response	160 nm to 710 nm
High cathode sensitivity	
Luminous	100 µA/Im
Radiant at 410 nm	
High anode sensitivity	
Luminous	1200 A/Im
Radiant at 410 nm	8.4 × 10 ⁵ A/W
●Low dark current	0.2 nA
●Low dark counts (R7447P)	10 s ⁻¹



Environmental monitoring
Atomic emission spectrometer
Atomic absorption spectrometer

SPECIFICATIONS GENERAL Parameter **Description / Value** Unit Spectral response 160 to 710 nm Wavelength of maximum response 410 nm Low noise bialkali Material Photocathode Minimum effective area 8 × 24 mm Window material Silica Circular-cage Structure Dynode Number of stages 9 Direct Anode to last dynode 4 pF interelectrode Anode to all other 6 pF capacitances electrode Base 11-pin base Weight Approx. 45 g Operating ambient temperature -30 to +50 °C Storage temperature -30 to +50 °C Suitable socket E678-11A (sold separately) Suitable socket assembly E717-63 (sold separately)

Figure 1: Typical spectral response

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office. Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2024 Hamamatsu Photonics K.K.

PHOTOMULTIPLIER TUBES R7447, R7447P (For Photon Counting)

MAXIMUM RATINGS (Absolute maximum values)

	Parameter	Value	Unit
	Between anode and cathode	1250	V
Supply voltage	Between anode and last dynode	250	V
Average anode current ^(A)		0.1	mA

CHARACTERISTICS (at 25 °C)

	Parameter	for g	R7447 eneral pur	pose	for p	Unit		
		Min.	Тур.	Max.	Min.	Тур.	Max.	
	Quantum efficiency at 300 nm	—	24	—		24	—	%
Cathode	Luminous [®]	80	100	—	80	100	—	µA/lm
sensitivity	Radiant at 410 nm (peak)	—	70	—	—	70	—	mA/W
	Blue sensitivity index ©		8	_		8	_	—
Anode	Anode Luminous ^(D) sensitivity Radiant at 410 nm		1200	—	1000	1200	—	A/Im
			8.4×10^{5}	—		8.4 × 10 ⁵	—	A/W
Gain D			1.2×10^{7}	—		1.2×10^{7}	—	—
Anode dark cur	rent (After 30 min storage in the darkness $^{(E)}$)		0.2	2.0		0.2	0.5	nA
Anode dark counts ®			—	_		10	50	S ⁻¹
ENI (Equivalent Noise Input) ©			3.3 × 10 ⁻¹⁷	_		3.3 × 10 ⁻¹⁷	_	W
Timo	Anode pulse rise time ®		2.2			2.2		ns
l ime –	Electron transit time ①		22			22		ns
response [©]	Transit time spread (TTS) ^①		1.2	—		1.2	—	ns

NOTES

- Averaged over any interval of 30 seconds maximum.
- B The light source is a tungsten filament lamp operated at a distribution temperature of 2856 kelvin. Supply voltage is 100 volts between the cathode and all other electrodes connected together as anode.
- © The value is cathode output current when a blue filter is interposed between the light source and the tube under the same condition as Note (B).
- D Measured with the same light source as Note B and with the voltage distribution ratio shown in Table 1 below.

Table 1: Voltage distribution ratio

Electrodes	ŀ	<	Dy	Dy1 Dy2		Dy	3	Dy4	Dy5		Dy6		Dy7		Dy8		Dy9		Р	
Distribution ratio		1				1	1		1		1	1		1		1		1		

Supply voltage: 1000 V, K: Cathode, Dy: Dynode, P: Anode © Measured with the same supply voltage and voltage distribution ratio

shown in Table 1.

©Measured at the plateau voltage.

Table 2: Voltage distribution ratio for plateau test

Electrodes	К	D	Dy1		2 D	Dy3		/4	Dy5		Dy6	Dy7		Dy8		Dy9		Р	
Distribution ratio		1		1	1	1		1	1		1	1		1		2		1	

Supply voltage: Plateau voltage, K: Cathode, Dy: Dynode, P: Anode

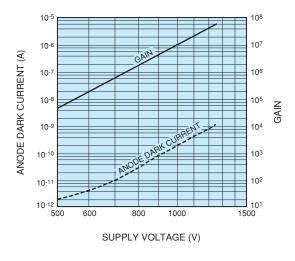
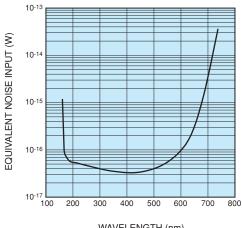
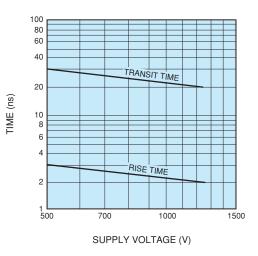
© ENI is an indication of the photon-limited signal-to-noise ratio. It refers to the amount of light in watts to produce a signal-to-noise ratio of unity in the output of a photomultiplier tube.

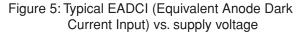
$$ENI = \frac{\sqrt{2 \cdot q \cdot ldb \cdot G \cdot \Delta f}}{S} \quad (W)$$

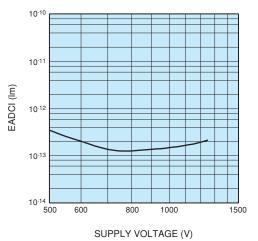
where $q = Electronic charge (1.60 \times 10^{-19} coulomb).$

- Idb = Anode dark current(after 30 minute storage) in amperes. G = Gain.
 - Δf = Bandwidth of the system in hertz. 1 hertz is used.
 - S = Anode radiant sensitivity in amperes per watt at the wavelength of peak response.
- (H) The rise time is the time for the output pulse to rise from 10 % to 90 % of the peak amplitude when the entire photocathode is illuminated by a delta function light pulse.
- ① The electron transit time is the interval between the arrival of delta function light pulse at the entrance window of the tube and the time when the anode output reaches the peak amplitude. In measurement, the whole photocathode is illuminated.
- ③Also called transit time jitter. This is the fluctuation in electron transit time between individual pulses in the signal photoelectron mode, and may be defined as the FWHM of the frequency distribution of electron transit times.

Figure 2: Typical gain and anode dark current


Figure 4: Typical ENI vs. wavelength



WAVELENGTH (nm)

Figure 3: Typical time response

Data shown here, which is given from a relation among supply voltage, anode sensitivity and dark current, serves as a good reference in order to determine the most suitable supply voltage or its range.

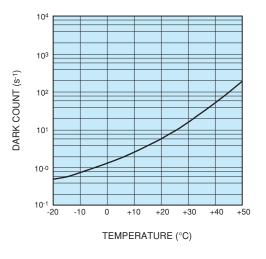
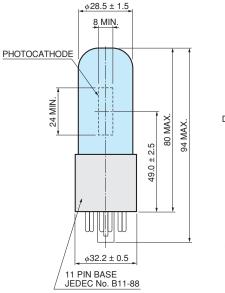
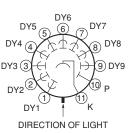




Figure 6: Typical temperature characteristics of dark count for R7447P

PHOTOMULTIPLIER TUBES R7447, R7447P (For Photon Counting)

Figure 7: Dimensional outline and basing diagram(Unit: mm)

BOTTOM VIEW (BASING DIAGRAM) Figure 8: Socket (Unit: mm) | Sold separately |

E678-11A

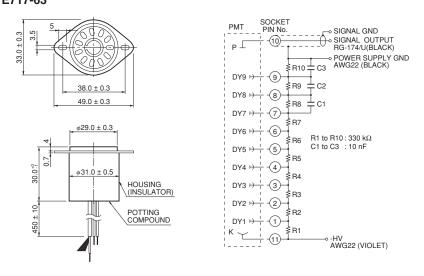



Figure 9: D-type socket assembly (Unit: mm) | Sold separately E717-63

* Hamamatsu also provides C13890 series compact high voltage power supplies and C12597-01, C8991 DP type socket assemblies which incorporate a DC to DC converter type high voltage power supply.

Warning-Personal Safety Hazards

Electrical Shock-Operating voltages applied to this device present a shock hazard.

HAMAMATSU PHOTONICS K.K. www.hamamatsu.com

Electron Tube Division

314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan, Telephone: (81)539/62-5248, Fax: (81)539/62-2205

U.S.A.: HAMAMATSU CORPORATION: 360 Foothill Road, Bridgewater, NJ 08807, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-2360, Fax: (1)909-2360, Fax