CO₂ Measurement by
- InAsSb photovoltaic detectors
- Mid infrared LEDs

CONTENTS

<table>
<thead>
<tr>
<th></th>
<th>P.2</th>
<th>P.3</th>
<th>P.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principle of CO₂ measurement with NDIR method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure of CO₂ measurement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example of CO₂ measurement</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sep. 2022
Principle of CO$_2$ measurement with NDIR method

In recent years, interest in gas analysis has risen due to its potential for application to the greenhouse gas problem and measures against infectious diseases. Hamamatsu Photonics handles photosensors and light sources suitable for gas analysis. Here, we introduce an example of CO$_2$ measurement using an InAsSb photovoltaic detector and a mid infrared LED.

NDIR method

NDIR (Non-Dispersive Infrared) detection method uses an optical filter to extract and detect only the wavelengths required for gas measurement. This method offers superior reliability and maintainability due to a simple detection principle, which uses no moving parts. Mostly containing cost-effective optical parts, it is non-dispersive and does not use image sensors. High cost performance optical parts are used in many measuring devices, including but not limited to portable measurement safety (explosive gas detection) devices and fixed environmental measurement devices.

Since there is a CO$_2$ absorption band near the wavelength of 4.3 µm, light is absorbed by CO$_2$ when exposed to light in that wavelength region. The amount of light absorbed increases as the CO$_2$ concentration increases, and the CO$_2$ concentration can be measured from the change in the signal level of the photosensor due to changes in the amount of light absorption.

Photosensors and light sources commonly used in the NDIR method include a combination of a lamp and a thermal type detector such as a thermopile detector.

Combining a quantum type detector such as an InAsSb photovoltaic detector with a mid infrared LED will contribute to the compactness, high accuracy, and low power consumption of NDIR type gas sensors.

Light source comparison

<table>
<thead>
<tr>
<th></th>
<th>Wavelength range</th>
<th>Output</th>
<th>Time response characteristics</th>
<th>Power consumption</th>
<th>Lifetime</th>
<th>Cost advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDs</td>
<td>Narrow</td>
<td>☆☆☆☆</td>
<td>☆☆☆☆☆</td>
<td>☆☆☆☆☆</td>
<td>☆☆☆☆☆</td>
<td>☆☆☆☆☆</td>
</tr>
<tr>
<td>Lamps</td>
<td>Wide</td>
<td>☆☆☆☆☆</td>
<td>☆☆☆☆☆☆</td>
<td>☆☆☆☆☆☆</td>
<td>☆☆☆☆☆</td>
<td>☆☆☆☆☆</td>
</tr>
</tbody>
</table>

Photosensor comparison

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Wavelength dependence</th>
<th>Time response characteristics</th>
<th>Cooling</th>
<th>Cost advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum type detectors</td>
<td>☆☆☆☆</td>
<td>Yes</td>
<td>☆☆☆☆☆</td>
<td>Required</td>
<td>☆☆☆☆☆</td>
</tr>
<tr>
<td>Thermal type detectors</td>
<td>☆☆☆</td>
<td>No</td>
<td>☆</td>
<td>Not required</td>
<td>☆☆☆☆☆</td>
</tr>
</tbody>
</table>
Structure of CO₂ measurement

Evaluation configuration (example)

![Diagram of evaluation configuration](Image)

Evaluation kit for InAsSb photovoltaic detector M16607-043CF

- Built-in element: InAsSb photovoltaic detector P13243-043CF
- Band-pass filter center wavelength: 4.26 µm
- Gain: 30 V/V
- Average count: 1000 times
- Frequency characteristics: DC to 80 kHz
- Recommended drive voltage: ±15 V

*1: Click here for details on the InAsSb photovoltaic detector P13243-043CF

Evaluation kit for LED M16615

- Built-in element: Mid infrared LED L15895-0430M
- Peak emission wavelength: 4.3 µm
- Output current: 400 mA
- Output pulse: 10 µs
- Output cycle: 1000 µs
- Recommended drive voltage: +15 V

*2: Click here for details on the mid infrared LED L15895-0430M (sold separately)
Example of CO₂ measurement

The following diagram shows the correlation between the results of measuring CO₂ with the structure on page 3 and the signal of the photosensor and the gas concentration.

CO₂ measurement result

As a result of measuring the signal by filling the gas pipe with CO₂ that has a concentration adjusted to 0 to 5000 ppm, we confirmed a 26% signal reduction due to the absorption of CO₂ in the gas pipe.

![Graph showing CO₂ measurement result](image)

Correlation between the signal of the photosensor and gas concentration

The graph of the signal level of the photosensor in relation to the gas concentration nearly coincides the cubic approximate curve. Therefore, CO₂ concentration can be found by measuring the signal level of gas concentration.

![Graph showing correlation between signal and gas concentration](image)

Hamamatsu offers mid-infrared LED with an emission wavelength of 3.9 µm and InAsSb photovoltaic detectors with a center wavelength of 3.9 µm for reference lights. Conversion to gas concentration with the use of the signal level of the wavelength (3.9 µm), in which CO₂ is not absorbed, makes contribution in measurement under the temperature changing environment and in measurement requiring higher accuracy.

Reference: CO₂ density and its impact

<table>
<thead>
<tr>
<th>CO₂ density</th>
<th>Environment state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approx. 400 ppm</td>
<td>CO₂ in the atmosphere</td>
</tr>
<tr>
<td>to 1000 ppm</td>
<td>Well-ventilated room</td>
</tr>
<tr>
<td>to 5000 ppm</td>
<td>Poorly ventilated room (headache or drowsiness)</td>
</tr>
<tr>
<td>5000 ppm or more</td>
<td>Limit value as a work place (based on regulations in Japan)</td>
</tr>
<tr>
<td>Approx. 40000 ppm</td>
<td>CO₂ contained in human exhaled breaths</td>
</tr>
</tbody>
</table>
Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.