

Imaging plate reader module

C15082

Compact imaging plate reader module with high resolution and high speed

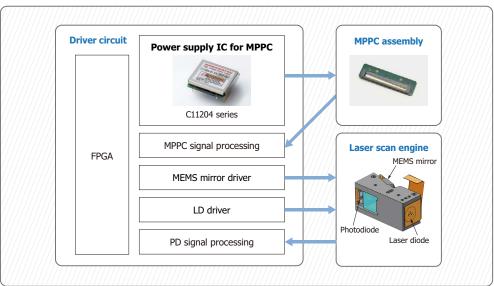
This product is a module optimized for reading of imaging plates (IP) in CR (computed radiography). Fluorescent light generated by irradiating the IP with the excitation laser scanned by the MEMS mirror is then received by the highly sensitive detector MPPC[®]. This product consists of a laser scan engine, MPPC assembly, and driver circuit, which all built-in a compact housing. These parts are optically adjusted with high precision, resulting in a high S/N ratio and image resolution.

Features

- Applications

High resolution: 12 to 14 LP/mm (high resolution mode) 11 to 12 LP/mm (standard mode)

- High-speed reading: 3.6 s (standard mode)
- High S/N ratio
- Ultra-compact: 75 × 60 × 34 mm


CR scanners
 Dental imaging plate scanner

Structure

Parameter		Specification		
Command interface		SPI		
Image data	A/D resolution	16 bit		
	Output method	Parallel bus		

Structure diagram

Imaging plate reader module

KACCC1259EA

1

Absolute maximum ratings

Parameter		Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Positive power supply	+Vs	-0.2	-	+18	V
Supply voltage	Negative power supply	-Vs	-18	-	+0.2	V
Input signal voltage		VI	-0.5	-	+4.12	V
Operating temperature ^{*1}		Topr	0	-	+50	°C
Storage temperature*1		Tstg	-20	-	+60	°C

*1: No dew condensation

When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Electrical and optical characteristics (Ta=25 °C, unless otherwise noted)

Laser scan engine

Parameter			Symbol	Min.	Тур.	Max.	Unit
Read position*2			-	-	2.5	-	mm
Laser scan width* ³			-	32	32 32.5		mm
Laser spot	size*3		-	-	- 40		μm
	Standard	Drive frequency	-	-	357	-	Hz
MEMS mirror	mode	Drive period	dri_pd	-	2.8	-	ms
	High resolution	Drive frequency	-	-	200	-	Hz
	mode	Drive period	dri_pd	-	5	-	ms
	Peak emission	Peak emission wavelength		652	660	665	nm
	Drive method	Drive method		Pulse			-
Laser	Peak power*4	Peak power*4		100	- 400		mW
	Pulse width	Pulse width		-	100	-	ns
	Repetition freq	Repetition frequency		-	500	1000	kHz

*2: Distance from the bottom of the product housing to the IP

*3: Read position=2.5 mm. Image quality deteriorates if the IP moves out of the read position.

*4: Pulse width=100 ns, duty ratio=20%

MPPC assembly

Parameter		Symbol	Min.	Тур.	Max.	Unit
Field of view ^{*5}		-	-	1.8×38	-	mm
	Pixel pitch -		-	50	-	μm
MPPC	Photon detection efficiency $(\lambda = 400 \text{ nm})^{*6}$	PDE	-	50	-	%

*5: Directly below the lens (read position=2.5 mm)

*6: Crosstalk and afterpulses are not included.

Driver circuit

Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	
Supply voltage		Vs	DC	±11.5	±12	±12.5	V	
Current consumption		+Is	+Vs	-	-	0.5	A	
Current consul	приоп		-Is	-Vs	-	-	0.1	A
Digital input vo	oltago	High level	VIH		2.0	3.3	3.45	V
	ollage	Low level	VIL		-0.3	0	0.8	V
Digital output	voltage	High level	Vон		2.4	3.3	3.4	V
	voitage	Low level	Vol		-	0	0.4	V
Image acquisit (DET_TRI) Hig		ence start trigger input	tri_t		10	-	-	ms
Wait time from the detection of the image acquisition sequence start trigger to the start of image acquisition		wait_t	1 cycle=1 dri_pd	100	-	4000	cycle	
Output voltage	Output voltage range of the MPPC power supply		-		40	-	58	V
	Clock frequency		-	Duty ratio=50%	-	-	10	MHz
	Time from falling edge of SPI_SS to falling edge of SPI_SCLK		t1		50	-	-	ns
SPI	SPI_SCLK High period SPI_SCLK Low period		t2		-	50	-	ns
			t3		-	50	-	ns
	Clock fi	requency	-	Duty ratio=50%	-	1	-	MHz
		m rising edge of BUS_LINE edge of BUS_CLK	t4		-	1000	-	ns
Parallel bus	BUS_CI High pe		t5		-	500	-	ns
	BUS_CI		t6		-	500	-	ns

Function

Image acquisition mode

By changing the image acquisition mode, it is possible to change the IP read time and number of pixels.

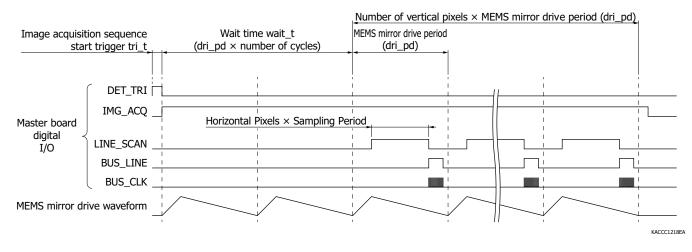
Mode	Number of pixels $H \times V$	MEMS mirror drive frequency (Hz)	Transport speed ^{*7} (mm/s)	Read time* ⁸ (s)	Theoretical limit to resolution (LP/mm)	Actual resolution (LP/mm)	
Standard mode (IP size 0/1/2 compatible)	900 × 1300	357	12.9	3.6	14	11 to 12	
Standard mode (IP size 3 compatible)	900 × 1600	557	12.9	4.5	14	11 (0 12	
High resolution mode (IP size 0/1/2 compatible)	1440 × 2080	200	4.5	10.4	23	12 to 14	
High resolution mode (IP size 3 compatible)	1440 × 2600	200	с.т	13.0	23		

*7: The theoretical value needed in order to realize the actual IP aspect ratio.

*8: The read time for each image acquisition mode is calculated with the following formula.

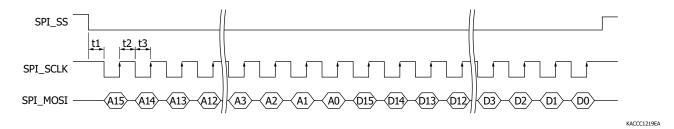
Read time = Number of vertical pixels × Drive frequency of MEMS mirror

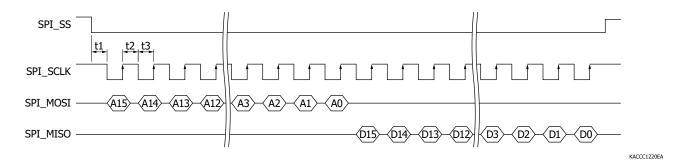
 \cdot Calculation example (IP size 0/1/2 compatible, standard mode) Read time = 1300 pixels \times 2.8 ms = 3.6 s

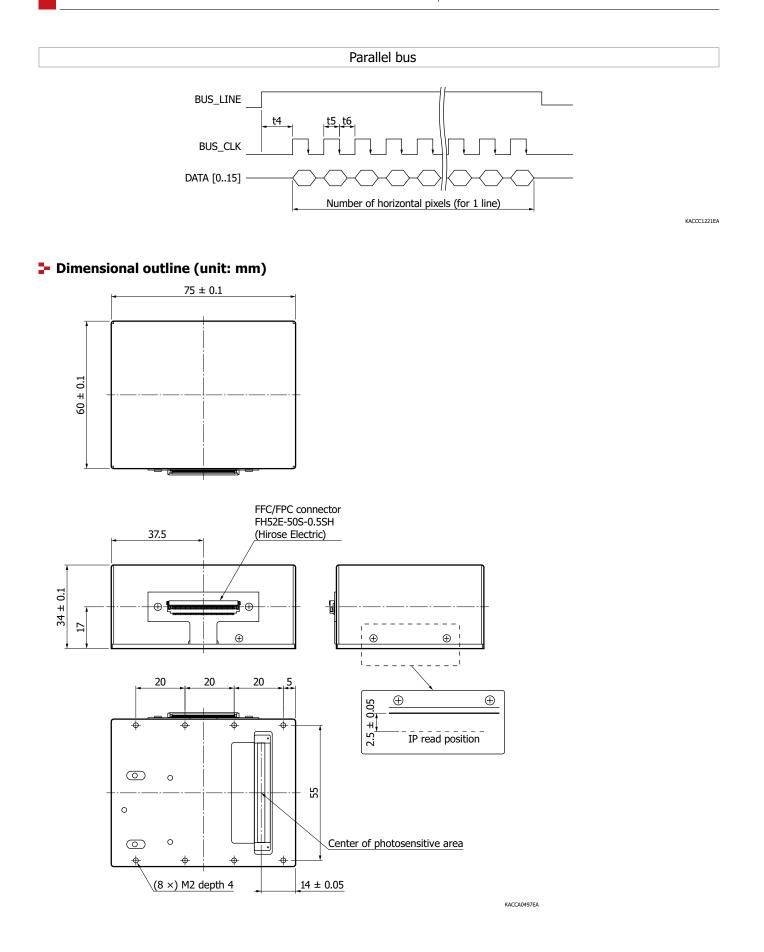

Therefore, this value is an estimate of the time from actual start of image acquisition to image data transfer. This excludes the wait time (wait_t) from the detection of the image acquisition sequence start trigger to the start of image acquisition.

Timing chart

Image acquisition sequence

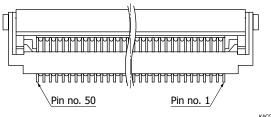

After turning on the power, when no image has been acquired (IMG_ACQ=Low) and SPI communication is possible (SPI_EN=High), once the module receives the image acquisition sequence start trigger (DET_TRI=High), the image acquisition sequence starts automatically in the preset image acquisition mode. After the trigger is detected, actual image acquisition starts after wait time (wait_t), and one line of image data is output by the parallel bus each time the laser scans one line with the MEMS mirror.


SPI communication


■ SPI communication (Write)

When no image has been acquired (IMG_ACQ=Low) and SPI communication is possible (SPI_EN=High), the external master board can access the FPGA via SPI.

SPI communication (Read)



Pin layout

■ FFC/FPC connector (FH52E-50S-0.5SH, Hirose Electric) Note: Be sure to use FFC/FPC that is compatible with this connector.

KACCC1222EA

Pin no.	Terminal name	Description	Pin no.	Terminal name	Description
1 2 3 4	+Vs	Positive supply voltage (+12 V)	27	IMG_ACQ	Outputs the image acquisition sequence status for a single frame. Outputs High from detection of the image acquisition sequence start trigger (DET_TRI=High) to the image data acquisition is completed.
5 6 7	GND	Power supply ground	28	LINE_SCAN	Outputs the image acquisition sequence status for a single line. Outputs a High level signal while acquiring image data for the number of horizontal pixels.
8			29	BUS_CLK	Parallel bus clock output
9 10	N-		30	BUS_LINE	Status output for a single line of image data on the parallel bus
11 12	-Vs	Negative supply voltage (-12 V)	31	HV STA MON	Outputs the status monitor of power supply IC for MPPC. Outputs High when any of the following things happen: overcurrent to MPPC, temperature
13 14	NC	No connection			sensor not connected, abnormal temperature from the temperature sensor, or voltage instability.
15 16			32 33	D.GND	Digital ground
17	D.GND	Digital ground	34		
18				DATA[0]	Parallel bus 0th bit of image data
19	SPI_SCLK	SPI communication clock input	36	DATA[1]	Parallel bus 1st bit of image data
20	SPI_MOSI	SPI communication serial data input	37	DATA[2]	Parallel bus 2nd bit of image data
21	SPI_MISO	SPI communication serial data output	38	DATA[3]	Parallel bus 3rd bit of image data
22	SPI_SS	SPI communication slave select input. Negative logic.	39	DATA[4]	Parallel bus 4th bit of image data
23	D.GND	Digital ground	40	DATA[5]	Parallel bus 5th bit of image data
24	DIGIND		41	DATA[6]	Parallel bus 6th bit of image data
		Image acquisition sequence start trigger input.	42	DATA[7]	Parallel bus 7th bit of image data
25	25 DET_TRI	Positive logic. It is pulled down using a 10 $k\Omega$		DATA[8]	Parallel bus 8th bit of image data
		resistor inside the driver circuit.	44	DATA[9]	Parallel bus 9th bit of image data
	26 SPI_EN	SPI communication enable output	45	DATA[10]	Parallel bus 10th bit of image data
26		High: SPI communication possible	46	DATA[11]	Parallel bus 11th bit of image data
		Low: SPI communication impossible	47	DATA[12]	Parallel bus 12th bit of image data
			48	DATA[13]	Parallel bus 13th bit of image data
			49	DATA[14]	Parallel bus 14th bit of image data
			50	DATA[15]	Parallel bus 15th bit of image data

Accessories

· Instruction manual, command reference

Precautions

- About static electricity
- · Electrostatic countermeasures

Since this product is equipped with a laser and is sensitive to static electricity, it is recommended to wear anti-static gloves or work on an anti-electric mat when handling it.

· Storage environment

Avoid dry, static-prone environments and store in a moderately humid area.

Contact precautions

Do not touch the terminal parts of the product directly. To prevent damage caused by static electricity, touch the metal parts before contact to discharge static electricity.

About vibration

· Vibration countermeasures

Vibrations may affect the scanned image of this product. It is recommended to install it in a stable place and use a material that suppresses vibration.

· Transportation precautions

Place in the dedicated protective case during transport and use a cushioning material to avoid vibration or impact.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

Precautions

Disclaimer

The content of this document is current as of June 2025.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

Optical Semiconductor Sales, HAMAMATSU PHOTONICS K.K.

1126-1 Ichino-cho, Chuo-ku, Hamamatsu City, Shizuoka Pref., 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

1126-1 ICTINO-CIO, CIUO-KU, HamamatsU CITY, ShiZuoKa Prefr, 435-8558 Japan, Ielephone: (81)55-434-3311, FaX: (81)53-434-5184
USA: HAMAMATSU CREVORATION: 360 Foothull Road, Bridgewater, NJ 08807, USA, J Telephone: (19)08-231-0960, Fax: (19)08-231-1218
Germany: HAMAMATSU DENDRATION: 360 Foothull Road, Bridgewater, NJ 08807, USA, J Telephone: (19)08-231-0960, Fax: (19)08-231-1218
Germany: HAMAMATSU PHOTONICS SEUTSCHLAND CMBH: Arzbergerstr. 10, 82211 Herrsching am Anmersee, Germany, Telephone: (49)8152-375-0, Fax: (49)152-265-8 E-mail: info@hamamatsu.de
France: HAMAMATSU PHOTONICS FRANCE S.A.R.L: 19 Rue du Saule Trapu, Part du Moulin de Massy, 91882 Massy Cdek, France, Telephone: (33)1 69 537 11 0, Fax: (34)1707-325777 Fax: (34)1707-32577 Fax: (34)1707-3257

mamatsu.com.t