

What is a photo IC?

Photo ICs are optical devices that combine an opto-semiconductor and a signal processing circuit into one package. Hamamatsu combines optical device technology, circuit technology, wafer process technology, and packaging technology to produce photo ICs suitable for a variety of applications.

We have established an integrated system from circuit and package design to wafer process, assembly, and inspection, and we also conduct various analyses and evaluations including reliability tests. We also offer photo ICs with custom specifications to suit your requests.

Integrating many functions

- → Contribute to the miniaturization of your equipment
- → Reduce total cost by simplifying external circuits

Optical device technologies

High sensitivity, high-speed response, multi-split, with on-chip filter

Wafer process technologies

Monolithically integrated high-speed and high-accuracy circuits

Circuit technologies

Design of circuits suitable for applications, analog circuits, digital circuits, A/D conversion, various interfaces

Packaging technologies

Supports metal, mold, ceramic, etc., as well as optical designs (e.g., with lens/filter)

Features

Photo ICs offer the following features compared to circuits configured with discrete parts:

- Compact and lightweight
- · Resistant to electromagnetic induction noise
- High reliability
- · Excellent mass productivity
- · High cost performance

Structure types

There are two types of photo ICs, monolithic and hybrid. When designing customized photo ICs, we propose the most suitable type in consideration of the balance between performance and cost.

Monolithic type photo IC	Forming the photosensor and signal processing circuit on the same chip	Compact size Resistant to noise and not affected by unnecessary parasitic parameters due to the short wiring that connects a photosensor and a signal processing circuit Stable operation
Hybrid type photo IC	Connecting the photosensor and signal processing circuit in one package	 Photosensor's shape and characteristics can be easily changed (high degree of design freedom is possible) Combination with a light emitter (LED, etc.) available

Applications

Hamamatsu photo ICs are used in a variety of applications, including ambient light (illuminance and color) detection, plastic optical fiber communications, optical switches, encoders, etc. We can also provide photo ICs that meet FA and automotive standards.

■ Human body sensing

· Light modulation photo IC

■ Detection of ambient light

- · Photo IC diodes (illuminance)
- · Color sensors (color)

■ Detection of printer printing start timing

Photo IC for laser beam synchronous detection

■ Industrial networks

· Photo IC for optical link

■ Object detection, safety light curtain

- · Photo IC for optical switch
- · Light modulation photo IC
- · Schmitt trigger circuit photo IC

■ Distance measurement

· Photosensors with front-end IC

■ Position/rotation detection

· Photo IC for encoder

■ In-vehicle network (MOST)

· Photo IC for optical link

■ Auto light

· Photo IC diodes

■ Anti-glare mirror

· Light-to-frequency converter photo IC

■ LiDAR

· Photosensors with front-end IC

■ Human machine interface

- · Photo IC for encoder
- · Schmitt trigger circuit photo IC

Custom products available

Hamamatsu accepts custom orders for photo ICs. In addition to adding functions, increasing reliability, and reducing costs, we can also offer alternatives to discontinued products from other manufacturers. Utilizing our extensive track record and know-how in opto-semiconductors, we consistently handle proposals, designs, prototypes, and mass production.

We offer photo ICs with custom specifications to suit your requests

Circuit technologies

With a wealth of knowledge about photosensors, Hamamatsu can design circuits to meet your requirements. In addition to the first-stage amplifier suitable for the photosensors, we support analog circuits and digital circuits.

First-stage amplifier

- Current amplifier
- · Voltage amplifier
- · Current-to-voltage amplifier
- Current-to-frequency converter
- Transimpedance amplifier
- · Charge amplifier
- · Chopper amplifier
- Instrumentation amplifier, etc.
- Wide band
- · High sensitivity
- · Background light removal
- Gain adjustment
- Low offset
- · Low voltage, etc.

■ Circuit example

Comparator	Wide band With hysteresis
Filter	Active filter Low-pass filter High-pass filter
Detection circuit	Edge detection circuit Sample hold circuit Peak detection circuit Bottom detection circuit
Voltage amplifier	Buffer amplifier Linear amplifier Limiting amplifier
Other circuits	Temperature detection circuit Light level monitor circuit LED driver circuit
Power supply system	Reference voltage source Current source Regulator
Output method	Open drain Open collector

Input/output interface	· TTL · CMOS · LVDS · PECL · CML
Signal processing	 Various logic gates Counter Timer circuit Oscillator Timing generator A/D converter
Serial communication interface	· I ² C · SPI

♦ Laser trimming process can correct for characteristic variations

Procedural flow from custom order to delivery

Hamamatsu has established a comprehensive production system ranging from photo IC design to wafer process, assembly, inspection, and mass production at our ISO9000 and ISO14000 compliant domestic factories. We also offer strong support for various analyses and evaluation systems such as reliability testing.

Main Factory (Si process, MEMS process, module manufacturing)

Mitsue Factory (Assembly)

Shingai Factory (Assembly)

Miyakoda Factory (Compound process, semiconductor laser manufacturing)

Photo IC product examples

Ideal for detecting pulse signals

Photosensors with front-end IC

These are photo ICs in which an APD and transimpedance amplifiers (TIAs) are integrated. They achieve high sensitivity, low noise, and high-speed response, making them suitable for distance measurement. They consist of our APD and our unique circuit, and adopt a design that is not easily affected by the usage environment such as background light. They are hybrid type photo ICs and can be used for custom products with built-in APD and APD array with different photosensitive area sizes.

■ Product examples

Hamamatsu photo IC technologies

- <u>Transimpedance amplifier</u> to bring out the characteristics of APDs → Optimizes gain and bandwidth
- DC feedback circuit which automatically removes DC offset components generated by TIA > Less susceptible to background light
- Logic circuit for gain switching function
- · Circuit technology that achieves a stable output even when excessive light enters the photo IC
- · Circuit design to reduce ringing of output waveforms that cause malfunctions when detecting pulse signals
- APD array can be built-in
- Serial output type that outputs from any pixel specified in the selection logic and parallel output type that can measure all pixels simultaneously
- Circuit design with consideration for resistance to high voltages unique to APDs and for effects of element heating on APD characteristics

AGV (automated guided vehicle)

Autonomous driving, LiDAR

Robot cleaner

Laser rangefinder

Enables object detection with few malfunctionseven under background light

Light modulation photo IC

These are photo ICs that can detect objects with high sensitivity and few malfunctions even under background light. By connecting LED, they can be used as a transmissive type (photointerruptor) or reflective type (photoreflector) optical switches that combine a photosensor and a light emitter.

In addition to background light countermeasures, light modulation photo ICs employ a synchronous detection method that pulse-modulates the signal light and detects the signal in synchronization with that timing. This reduces the effect of noise from light entering asynchronously.

They are monolithic type photo ICs, and a photodiode and an amplifier are connected within the chip, minimizing the effects of parasitic parameters and noise on amplifier performance.

■ Product example

KPICC0002EA

▶ Hamamatsu photo IC technologies

- <u>Preamplifier (AC amplifier circuit)</u> with expanded dynamic range for DC and low frequency background light without impairing signal detection sensitivity
- · Capacitance coupling to remove the effects of low-frequency background light and the DC offset of the preamplifier
- · Comparator with hysteresis to prevent chattering (malfunction) caused by minute fluctuations in incident light
- Oscillator and timing generator that synchronize the timing of LED drive and digital signal processing
- Dedicated logic circuit (signal processing circuit) for synchronous detection
- LED drive circuit (open collector drive) that drives external LED by LED driving pulses generated in timing generators

Safety light curtain

Auto faucet

Achieves low-cost optical link systems

Photo IC for optical link

These are transmitter/receiver photo ICs for plastic optical fiber communications. The transmitter photo ICs are equipped with an LED with a wavelength of 650 nm and a drive IC with a temperature compensation function. They support a wide operating temperature range and provide stable light output. The receiver photo ICs consist of a Si PIN photodiode and a signal processing circuit. The adoption of a fully differential structure using a dummy photodiode reduces the effects of external noise, achieving high sensitivity. It has a sleep function that reduces power consumption during a waiting time, and switches to standby mode when there is no input.

To customize these photo ICs, select an LED and a Si photodiode to match the fiber you are using. Customization is possible for both hybrid types and monolithic types.

Product examples

▶ Hamamatsu photo IC technologies

- Peaking circuit to correct the light output waveform response
- <u>Temperature sensing circuit</u> and <u>LED driver</u> circuit to correct LED temperature fluctuations
- <u>Low distortion circuit</u> with stable output for temperature/supply voltage fluctuations
- <u>Fully differential circuit</u> (dummy photodiode is used to eliminate external noise and power supply noise)

- Transimpedance amplifiers with optimized gain and band
- Signal detection circuit for sleep function
- <u>Power supply isolation</u> to avoid "swinging back" on the power line that causes jitter
- Supports output interfaces such as LVDS, PECL, and CML

In-vehicle network

Communication between devices

Two-terminal sensors as easy to use as photodiodes, capable of high-current output

Photo IC diodes

These photo ICs amplify and output the photocurrent generated by a photodiode. Highly sensitive and stable operation is possible, and they can be used in the same way as reverse-biased photodiodes.

Two types are available, infrared type and visual-sensitive compensation type. The visual-sensitive compensation type consists of two photodiodes with different on-chip filters and a current amplifier (subtracted amplifier circuit). They achieve spectral response close to human eye sensitivity and can be used as illuminance sensors.

Product examples

Spectral response example

Spectral response example

▶ Hamamatsu photo IC technologies

- · Current amplifier realizing a wide operating temperature range and highly sensitive, stable operation
- Subtraction amplifier circuit for spectral response close to human eye sensitivity in combination with on-chip filters

KPICB0036EA

Automatic lighting

Auto lights in automobiles

For optical encoders

Photo IC for encoder

These are photo ICs for configuring optical encoders. The following customization is available to meet your encoder specifications:

- · Special photodiode pattern
- · Emitter/receiver integrated type combining a photodiode and an LED
- · Reduced mounting space realized by miniaturization (monolithic type)
- · I2C interface

■ Product example

LED integrated photo IC (monolithic type)

Block diagram

Custom processing example

Photo IC chip example

▶ Hamamatsu photo IC technologies

- Detection circuit (preamplifier) to detect rotation/position/speed
- Analog output (amplifier output) or digital output (comparator output)
- I²C interface or SPI for multifunction capability

Transmissive encoder

Reflective encoder

Information transfer between ICs via two signal lines

I²C-compatible color sensors

These are color sensors compatible with I2C (Inter-Integrated Circuit) interface. They have a built-in photodiode with an onchip filter that is sensitive to Red (λp=615 nm), Green (λp=530 nm), and Blue (λp=460 nm) lights. The I²C interface can be connected to a microcontroller. The detection results are output with a 16-bit digital value for each color. The sensitivity and integration time are adjustable so that photometry can be performed under a variety of conditions.

Product example

Hamamatsu photo IC technologies

- Photometry over a wide dynamic range
- Square wave output with oscillation frequency proportional to incident light level (duty ratio: 50%), current-to-frequency conversion circuit that can be directly connected to the logic circuit input
- Timer circuit with built-in oscillator outputting internal clock and integration time
- Counter circuit that counts the output frequency within the integration time
- A/D converter that converts detection results to 16-bit digital values
- Register circuit to store counter data and I²C interface data
- I²C interface for transmitting and receiving data to and from the outside

Application examples

Backlight monitor (backlight dimming)

Printer printing monitor

Information described in this material is current as of August 2024.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

AMAMAT:

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Chuo-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

1.126-1 IChino-Cho, Chuo-Ku, Hamamatsu City, 435-8558 Japan, Ielephone: (81)53-434-3311, Fax: (81)53-434-5184

U.S.A.: HAMAMATSU CORPORATION: 360 Foothill Road, Bridgewater, NJ 08807, U.S.A., Telephone: (1)908-231-1218 E-mail: usa@hamamatsu.com
Germany: HAMAMATSU PHOTONICS DEUTSCHLAND GMBH.: Arzbergerstr. 10, 82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8 E-mail: info@hamamatsu.de
France: HAMAMATSU PHOTONICS FRANCE S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 10, Fax: (33)1 69 53 71 10 E-mail: info@hamamatsu.fr
United Kingdom: HAMAMATSU PHOTONICS IX LIMITED: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AZ J 18W, UK, Telephone: (44)1707-235777 E-mail: info@hamamatsu.co.uk
North Europe: HAMAMATSU PHOTONICS NORDEN AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01 E-mail: info@hamamatsu.se
Italy: HAMAMATSU PHOTONICS ITALIA S.R.L.: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy, Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41 E-mail: info@hamamatsu.it
Italy: HAMAMATSU PHOTONICS (CHINA), CO., ITD.: 1201 Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Chaoyang District, 100020 Beijing, PR. China, Telephone: (66)10-6586-6006, Fax: (66)10