

CCD area image sensors

S12600/S12601 series

Back-thinned FFT-CCD

The S12600/S12601 series are measurement type FFT-CCD area image sensors developed for low-light-level detection. By using the binning operation, they can be used as a linear image sensor having a long side aligned along the height direction of the photosensitive area. This makes them suited for use in spectrophotometry detectors. The binning operation offers significant improvement in S/N and signal processing speed compared with conventional methods by which signals are digitally added by an external circuit. The S12600/S12601 series are now capable of high-speed readout due to the reduced resistance in the register wiring and the adoption of a high-speed amplifier.

Features

- One-stage TE-cooled type (S12601 series)
- Pixel size: 24 × 24 µm
- Line/pixel binning capabilities
- Quantum efficiency: 90% or higher at peak
- Wide spectral response range
- High-speed readout (fc=5 MHz max.)
- Wide dynamic range
- MPP operation
- High UV sensitivity and stable characteristics under UV light irradiation
- Fill factor: 100%

Applications

- Fluorescence spectrophotometry, ICP
- Industrial product inspection
- Semiconductor inspection
- DNA sequencer
- Low-light-level detection

Selection guide

Type no.	Cooling	Total number of pixels	Number of effective pixels	Image size [mm (H) × mm (V)]
S12600-1006	Non-cooled	1044 × 64	1024 × 58	24.576 × 1.392
S12600-1007	Non-cooled	1044 × 128	1024 × 122	24.576 × 2.928
S12601-1006S	One stage TE seeled	1044 × 64	1024 × 58	24.576 × 1.392
S12601-1007S	One-stage TE-cooled	1044 × 128	1024 × 122	24.576 × 2.928

Structure

Parameter	S12600 series	S12601 series				
Pixel size (H \times V)	24 × 24 μm					
Vertical clock	2-phase					
Horizontal clock	2-phase					
Output circuit	Two-stage MOSFET source follower					
Package	24-pin ceramic DIP (refer to dimensional outlines)					
Window material*1	Quartz glass* ²	AR-coated sapphire* ³				

*1: Temporary window type (S12600-1006N/-1007N) is also available upon request.

*2: Resin sealing

*3: Hermetic sealing

Absolute maximum ratings (Ta=25 °C)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating temperature*4 *5	Topr		-50	-	+50	°C
Storage temperature*5	Tstg		-50	-	+70	°C
Output transistor drain voltage	Vod		-0.5	-	+20	V
Reset drain voltage	Vrd		-0.5	-	+18	V
Output amplifier feedback voltage	Vret		-0.5	-	+18	V
Vertical input source voltage	VISV		-0.5	-	+18	V
Horizontal input source voltage	VISH		-0.5	-	+18	V
Vertical input gate voltage	Vigiv, Vigiv		-10	-	+15	V
Horizontal input gate voltage	Vig1h, Vig2h		-10	-	+15	V
Summing gate voltage	Vsg		-10	-	+15	V
Output gate voltage	Vog		-10	-	+15	V
Reset gate voltage	Vrg		-10	-	+15	V
Transfer gate voltage	Vtg		-10	-	+15	V
Vertical shift register clock voltage	Vp1v, Vp2v		-10	-	+15	V
Horizontal shift register clock voltage	Vp1h, Vp2h		-10	-	+15	V
Maximum current of TE-cooler*6	Imax	Tc* ⁷ =Th* ⁸ =25 °C	-	-	3.0	A
Maximum voltage of TE-cooler	Vmax	Tc*7=Th*8=25 °C	-	-	3.6	V
Maximum temperature of the heat radiation side of the TE-cooler	-		-	-	70	°C

*4: Package temperature (S12600 series), chip temperature (S12601 series)

*5: No dew condensation

When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.

*6: When the current value exceeds Imax, the heat absorption rate begins to decrease due to the Joule heat. This maximum current Imax is not the threshold for damaging the TE-cooler. To protect the TE-cooler and maintain stable operation, the supply current should be less than 60% of this maximum current.

*7: Temperature of the cooling side of the TE-cooler

*8: Temperature of the heat radiation side of the TE-cooler

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

	Parameter		Symbol	Min.	Тур.	Max.	Unit
Output trar	nsistor drain voltage	;	Vod	14	15	16	V
Reset drain	voltage		Vrd	13	14	15	V
Output amp	olifier feedback volta	age*9	Vret	1.5	2	3	V
Output gate	e voltage		Vog	1	3	5	V
Substrate v	oltage		Vss	-	0	-	V
	Vertical input sour	ce	VISV	-	Vrd	-	V
Tost point	Horizontal input so	ource	VISH	-	Vrd	-	V
Test point	Vertical input gate		Vigiv, Vigiv	-9	-8	-	V
	Horizontal input gate		Vig1h, Vig2h	-9	-8	-	V
Vortical chift	register clock voltage	High	Vp1vh, Vp2vh	4	6	8	V
	register clock voltage	Low	VP1VL, VP2VL	-9	-8	-7	v
Horizontal chi	ft register cleck voltage	High	Vр1нн, Vр2нн	4	6	8	V
HONZONIAI SIII	ft register clock voltage	Low	VP1HL, VP2HL	-9	-8	-7	v
Cumming	ata valtaga	High	Vsgh	4	6	8	
Summing g	Summing gate voltage		Vsgl	-9	-8	-7	v
Reset date voltade		High	Vrgh	5	7	9	N
		Low	Vrgl	-9	-8	-7	v
Iransfer date voltade		High	Vtgh	4	6	8	
		Low	Vtgl	-9	-8	-7	V
External loa	ad resistance		RL	1	2.2	3	kΩ

Operating conditions (MPP mode, Ta=25 °C)

*9: The output amplifier feedback voltage is positive relative to the substrate voltage, but the current flows from the sensor.

Electrical characteristics [Ta=25 °C, fc=3 MHz, operating conditions: Typ. (P.2), timing chart (P.6)]

Parameter		Symbol	Min.	Тур.	Max.	Unit
Signal output freque	ncy	fc	0.1	3	5	MHz
Vertical shift register	S12600-1006, S12601-1006S		-	1500	-	۳E
capacitance	S12600-1007, S12601-1007S	CP1V, CP2V	-	3000	-	pF
Horizontal shift regis	ter capacitance	Ср1н, Ср2н	-	180	-	pF
Summing gate capacitance		Csg	-	30	-	pF
Reset gate capacitance		Crg	-	15	-	pF
Transfer gate capacitance		Стб	-	75	-	pF
Charge transfer efficiency*10		CTE	0.99995	0.99999	-	-
DC output level ^{*11}		Vout	9	10	11	V
Output impedance*11		Zo	-	200	-	Ω
Power consumption*	11 *12	Р	-	90	100	mW

*10: Charge transfer efficiency per pixel, measured at half of the saturation output

*11: Varies depending on the load resistance. (Typ. VoD=15 V, load resistance=2.2 k Ω)

*12: Power consumption of the on-chip amp plus load resistance

Electrical and optical characteristics [Ta=25 °C, fc=3 MHz, operating conditions: Typ. (P.2), timing chart (P.6)]

	Para	meter	Symbol	Min.	Тур.	Max.	Unit
Saturatio	on output vol	tage	Vsat	-	Fw × Sv	-	V
Coturoti	on charge	Vertical	– Fw	240	320	-	l (ot
Saturatio	on charge	Horizontal*13		800	1000	-	– ke⁻
Conversi	ion efficiency		CE	1.8	2.2	3	µV/e⁻
Dark cur	rent*14	25 °C	DC	-	100	1000	o-/nivol/a
(MPP mo	ode)	0 °C	– DS	-	10	100	e ⁻ /pixel/s
Readout	Readout noise ^{*15}		Nread	20	30	40	e⁻ rms
Dunamic	c range ^{*16}	Line binning	Drango	20000	33000	-	-
Dynamic	ange 10	Area scanning	– Drange	6000	10700	-	-
Photores	sponse nonur	iformity* ¹⁷	PRNU	-	±3	±10	%
Spectral	response rar	nge	λ	-	200 to 1100	-	nm
	Point defect	White spots		-	-	0	-
		Plack chotc		-	-	10	-
DIETTIIST	Cluster defe	Cluster defect ^{*19}		-	-	3	-
	Column defe	ct* ²⁰		-	-	0	-

*13: Linearity=±1.5%

*14: Dark current nearly doubles for every 5 to 7 °C increase in temperature.

*15: Using a Hamamatsu evaluation circuit (with CDS circuit, chip temperature: 0 °C, operating frequency: 3 MHz)

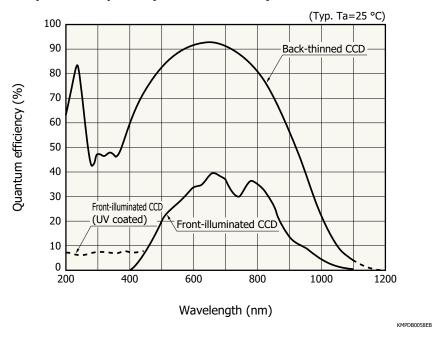
*16: Dynamic range=Saturation charge/Readout noise

*17: Measured at one-half of the saturation output using LED light (peak emission wavelength: 560 nm)

Photoresponse nonuniformity = $\frac{\text{Fixed pattern noise (peak to peak)}}{\text{Provided Photoresponse nonuniformity}} \times 100 [\%]$

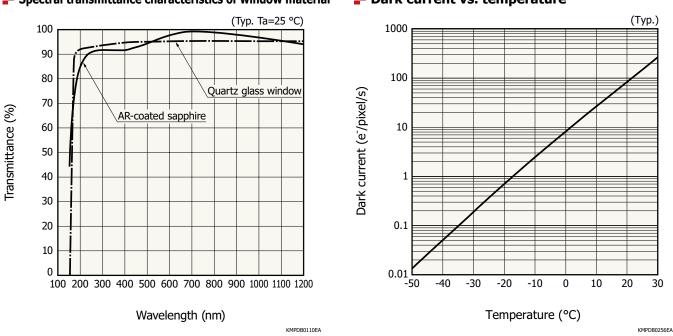
Signal

*18: White spots


Pixels whose dark current is higher than 1 ke- after one-second integration at a cooling temperature of 0 $^{\circ}\mathrm{C}$ Black spots

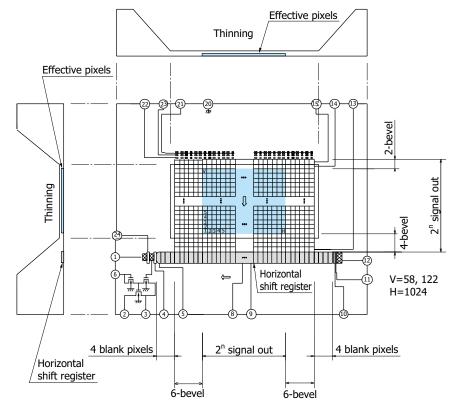
Pixels whose sensitivity is lower than one half of the average pixel output (measured with uniform light producing one-half of the saturation charge)

*19: 2 to 9 consecutive image defects


*20: 10 or more consecutive image defects

Spectral response (without window)*21

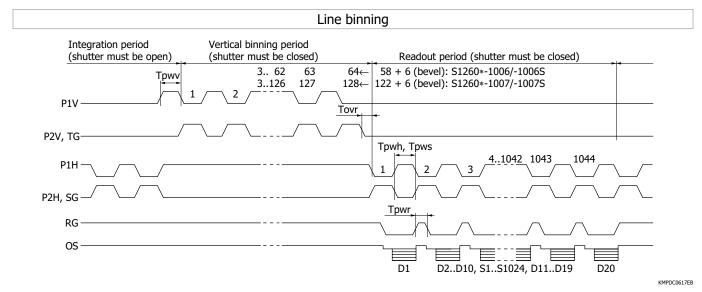
*21: Spectral response is decreased according to the spectral transmittance characteristics of the quartz glass or AR-coated sapphire.



Spectral transmittance characteristics of window material

Dark current vs. temperature

KMPDC0616EC

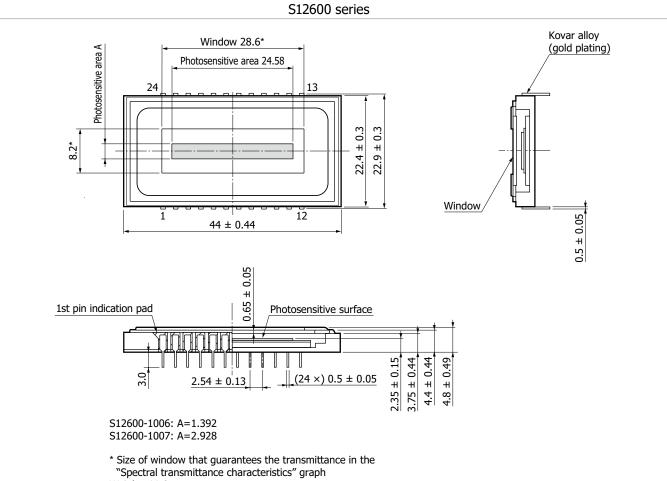


Device structure (schematic of CCD chip as viewed from top of dimensional outline)

Note: When viewed from the direction of the incident light, the horizontal shift register is covered with a thick silicon layer (dead layer). However, long-wavelength light passes through the silicon dead layer and may possibly be detected by the horizontal shift register. To prevent this, provide light shield on that area as needed.

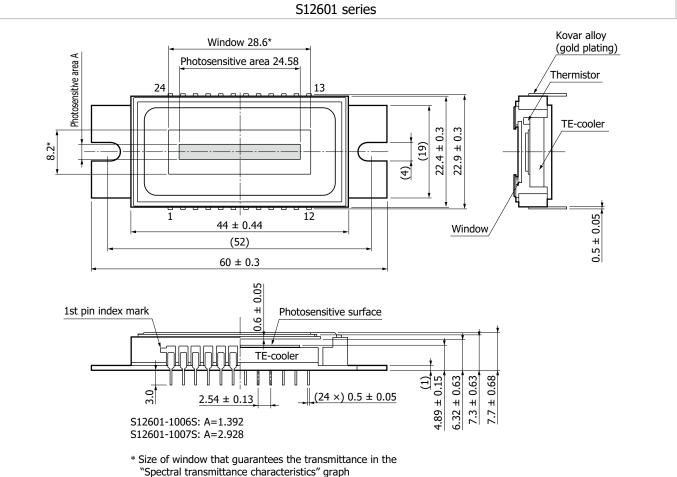
HAMAMATSU PHOTON IS OUR BUSINESS

Timing chart



Parameter Symbol Min. Тур. Max. Unit S12600-1006, S12601-1006S 0.5 1 -Pulse width Tpwv μs S12600-1007, S12601-1007S P1V, P2V, TG*22 1 2 -Rise and fall times Tprv, Tpfv 20 ns Pulse width Tpwh 100 166 _ ns P1H, P2H*21 Rise and fall times 10 Tprh, Tpfh _ ns 50 Duty ratio -_ % Pulse width Tpws 100 166 ns -SG Rise and fall times Tprs, Tpfs 10 ns --% Duty ratio 50 ---Pulse width Tpwr 20 33 ns RG Rise and fall times Tprr, Tpfr 5 -ns TG – P1H Overlap time 1 2 -Tovr μs

*22: Symmetrical clock pulses should be overlapped at 50% of maximum pulse amplitude.


Dimensional outlines (unit: mm)

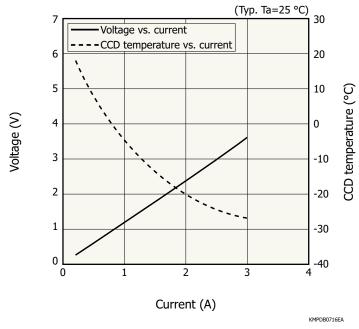
Weight: 11.9 g

KMPDA0588EB

Weight: 38.7 g

Pin connections

Dimmo		S12600 series		S12601 series	Note
Pin no.	Symbol	Function	Symbol	Function	(standard operation)
1	RD	Reset drain	RD	Reset drain	+14 V
2	OS	Output transistor source	OS	Output transistor source	RL=2.2 kΩ
3	OD	Output transistor drain	OD	Output transistor drain	+15 V
4	OG	Output gate	OG	Output gate	+3 V
5	SG	Summing gate	SG	Summing gate	Same timing as P2H
6	Vret	Output amplifier feedback voltage	Vret	Output amplifier feedback voltage	+2 V
7	-		-		
8	P2H	CCD horizontal register clock-2	P2H	CCD horizontal register clock-2	
9	P1H	CCD horizontal register clock-1	P1H	CCD horizontal register clock-1	
10	IG2H	Test point (horizontal input gate-2)	IG2H	Test point (horizontal input gate-2)	-8 V
11	IG1H	Test point (horizontal input gate-1)	IG1H	Test point (horizontal input gate-1)	-8 V
12	ISH	Test point (horizontal input source)	ISH	Test point (horizontal input source)	Connect to RD
13	TG*23	Transfer gate	TG*23	Transfer gate	Same timing as P2V
14	P2V	CCD vertical register clock-2	P2V	CCD vertical register clock-2	
15	P1V	CCD vertical register clock-1	P1V	CCD vertical register clock-1	
16	-		Th1	Thermistor	
17	-		Th2	Thermistor	
18	-		P-	TE-cooler (-)	
19	-		P+	TE-cooler (+)	
20	SS	Substrate (GND)	SS	Substrate (GND)	GND
21	ISV	Test point (vertical input source)	ISV	Test point (vertical input source)	Connect to RD
22	IG2V	Test point (vertical input gate-2)	IG2V	Test point (vertical input gate-2)	-8 V
23	IG1V	Test point (vertical input gate-1)	IG1V	Test point (vertical input gate-1)	-8 V
24	RG	Reset gate	RG	Reset gate	

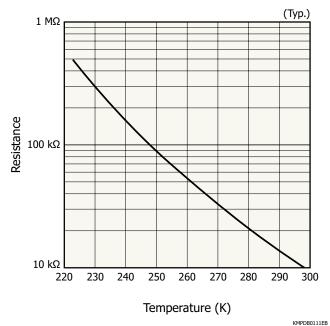

*23: Isolation gate between vertical register and horizontal register. In standard operation, TG should be applied the same pulse as P2V.

Specifications of built-in TE-cooler (Typ.)

Parameter	Symbol	Condition	Specification	Unit
Internal resistance	Rint	Ta=25 °C	1.2	Ω
Maximum heat absorption*24	Qmax		5.1	W

*24: This is a theoretical heat absorption level for correcting the temperature difference that occurs in the TE-cooler when the maximum current is supplied.

The temperature of the heat radiation side must be set to 30 °C or lower to make the cooling area -10 °C. As a guideline, use a heat-sink whose thermal resistance is $1^{\circ}C/W$ or lower.


Specifications of built-in temperature sensor

A thermistor chip is built into the same package with a CCD chip and monitors the operating CCD chip temperature. The relation between this thermistor's resistance and absolute temperature is express by the following equation.

 $RT1 = RT2 \times exp BT1/T2 (1/T1 - 1/T2)$

RT1: resistance at absolute temperature T1 [K] RT2: resistance at absolute temperature T2 [K] BT1/ T2: B constant [K]

The characteristics of the thermistor used are as follows. R298=10 k\Omega B298/323=3450 K

S12600/S12601 series

Precautions (electrostatic countermeasures)

- · Handle these sensors with bare hands or wearing cotton gloves. In addition, wear anti-static clothing or use a wrist band with an earth ring, in order to prevent electrostatic damage due to electrical charges from friction.
- · Do not place the sensor directly on workbenches or floors that may become charged with static electricity.
- · Connect a ground wire to workbenches or floors in order to discharge static electricity.
- · Ground tools, such as tweezers and soldering irons, that are used to handle the sensor.

It is not always necessary to provide all the electrostatic countermeasures stated above. Implement these countermeasures according to the extent of deterioration or damage that may occur.

Temperature gradient rate for cooling or heating of element

When using an external cooler, set the temperature gradient rate for cooling or heating the element to 5 K/minute or less.

Recommended soldering conditions

Parameter	Specification	Note
Soldering temperature	260 °C max. (once, within 5 seconds)	At least 2 mm away from lead roots

Related information

www.hamamatsu.com/sp/ssd/doc en.html

- Precautions
- · Disclaimer
- · Image sensors

Technical note

· CCD image sensor

Information described in this material is current as of October 2023.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

AMAMATSU

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

U.S.A.: HANAMATSU CROPORATION: 360 Foothill Road, Bridgewater, NJ 08807, U.S.A., Telephone: (19)08-231-0960, Fax: (19)86-231-218 Germany: HANAMATSU PHOTONICS DEUTSCHLAND GMBH: Arzbergerstr. 10, 82211 Herrsching am Anmersee, Germany, Telephone: (19)86-231-275-0, Fax: (49)8152-265-8 E-mail: info@hamamatsu.de France: HANAMATSU PHOTONICS FRANCE S.A.R.L.: 19 Rue du Saule Trapu, Par du Moulin de Massy, 91882 Massy Cdede, France, Telephone: (31)69 653 71 (0 Fo 37 11 (0 Fo 38 1

China: HAMAMATSU PHOTONICS (CHIINA) CO., LTD.: 1201, Tower B, Jiaming Center, 27 Dongsanhuan Bellu, Chaoyang District, 100020 Beijing, RR. China; Telephone: (86)10-6586-6006, Fax: (86)10-6586-2066 E-mail: hpc@hamamatsu.com.cn Taiwan: HAMAMATSU PHOTONICS TAIWAN CO., LTD.: 13F-1, No.101, Section 2, Gongdao 5th Road, East Dist., Hsinchu City, 300046, Taiwan(R.O.C) Telephone: (886)3-659-0080, Fax: (886)3-659-0081 E-mail: info@hamamatsu.com.tn