

PHOTON IS OUR BUSINESS

フロントエンドIC付光センサ

S13645-01CR

各種光量の検出に適した小型16素子APDアレイ (シリアル出力)

16素子APDアレイとプリアンプを一体化した小型光デバイスです。外乱光の影響を低減するためのDCフィードバック回路を内蔵しています。また、優れたノイズ特性・周波数特性を実現しています。S13645-01CRは、選択ロジックで指定した任意の1つのチャンネルから出力が得られます。

▶ 特長

→ 高速応答: 180 MHz

→ 増倍率2段階切替機能

(Lowゲイン: シングル出力, Highゲイン: 差動出力)

→ 外乱光の影響を低減

■ 過大光入射時に波形の乱れが小さい

➡ 用途

→ 距離計測

■ 構成

項目	記号	仕様	単位
検出素子	-	Si APDアレイ	-
受光面サイズ (1 素子当たり)	Α	1.0 × 0.4	mm
素子ピッチ	-	0.5	mm
素子数パッケージ	-	16	-
パッケージ	-	プラスチック	-

▶ 絶対最大定格

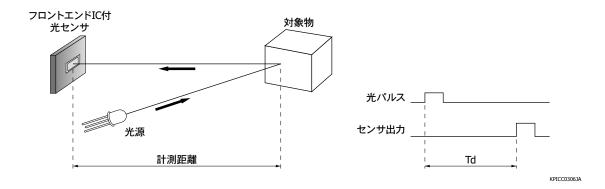
+T C		た /止	☆ね は	34 /T
項目	記号	条件	定格値	単位
電源電圧 (プリアンプ用)	Vcc max		4.5	V
逆電圧 (APD用)	V_APD		0 ∼ VBR	V
逆電流 (DC)	IR max		0.2	mA
DCFB端子電圧	-		Vcc + 0.7	V
Gain端子電圧	-		Vcc + 0.7	V
チャンネル選択端子電圧	-		Vcc + 0.7	V
動作温度	Topr	結露なきこと*1	-40 ∼ +105	°C
保存温度	Tstg	結露なきこと*1	-40 ∼ +125	°C
はんだ付け温度* ²	Tsol		260 (2回)	°C

^{*1:} 高湿環境においては、製品とその周囲で温度差があると製品表面が結露しやすく、特性や信頼性に影響が及ぶことがあります。

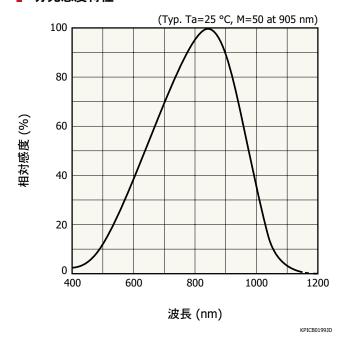
^{*2:} リフローはんだ付け、IPC/JEDEC J-STD-020 MSL 3、P.8参照

注) 絶対最大定格を一瞬でも超えると、製品の品質を損なう恐れがあります。必ず絶対最大定格の範囲内で使用してください。

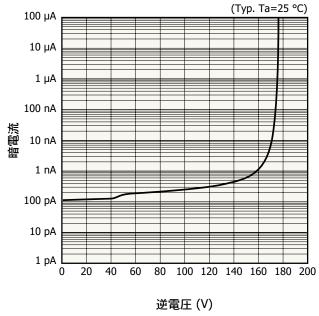
➡ 電気的および光学的特性 (Ta=25 °C)


項目	記号	条件	Min.	Тур.	Max.	単位
感度波長範囲	λ			400 ~ 1150		nm
最大感度波長	λр	M=100	-	840	-	nm
受光感度	S	λ=905 nm, M=1	-	0.5	-	A/W
降伏電圧	VBR	ID=100 μA	120	160	200	V
降伏電圧の温度係数	ΔTVBR		-	1.1	-	V/°C
暗電流	ID	M=50	-	0.4	4	nA
暗電流の温度係数	ΔTID	M=50	-	1.1	-	倍/°C
端子間容量	Ct	M=50, f=1 MHz	-	1.6	-	pF
過剰雑音指数	Х	M=50, λ=905 nm	-	0.3	-	-
APD增倍率	М	λ=905 nm	40	50	60	-
トランスインピーダンスアンプゲイン	G	Lowゲイン	-	1.8	-	kV/A
トランスインヒータンステンプリイン	G	Highゲイン	-	36	-	
消費電流	Icc	Lowゲイン	45	65	85	mA
/ /月頁电///		Highゲイン	45	65	85	
低域遮断周波数	fcl	Lowゲイン	-	0.01	0.1	MHz
医线压例问及数		Highゲイン	-	0.5	5	
高域遮断周波数	fch	Lowゲイン	120	180	240	MHz
同场 题 例 问 //文 数		Highゲイン	100	160	220	
入力換算雑音電流* ³	en	f=10 MHz, M=50	-	4	5.5	pA/Hz ^{1/2}
八刀夹并和目电机		f=100 MHz, M=50	-	6	8.25	
出力電圧レベル		Lowゲイン	0.65	1.15	1.65	V
山刀电圧レベル	-	Highゲイン	0.5	1	1.5	
出力オフセット電圧	Voffset	Highゲイン	-	-	±100	mV
最大出力電圧振幅	Vp-p max	Lowゲイン	0.3	-0.6	-	V
		Highゲイン	0.4	±0.8	-	
電源電圧	Vcc1, Vcc2		3.135	3.3	3.465	V
クロストーク	-		-	-25	-20	dB

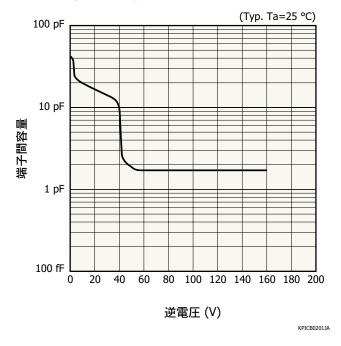
^{*3:} シミュレーションまたは特性評価により定めた参考値


距離測定方法

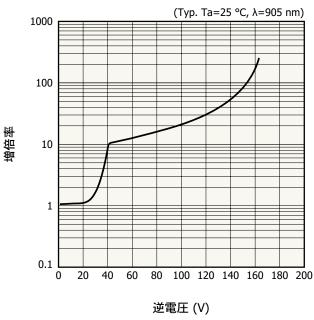
光源の発光タイミングとセンサ出力の時間差 Tdと光速 cによって、距離 Lを算出します。


 $L = (1/2) \times c \times Td$

▶ 分光感度特性

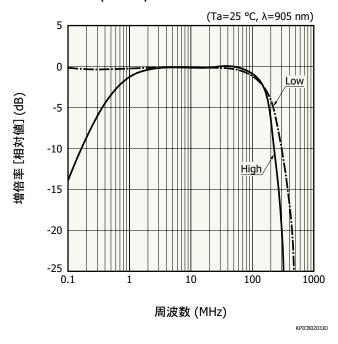


□ 暗電流 - 逆電圧

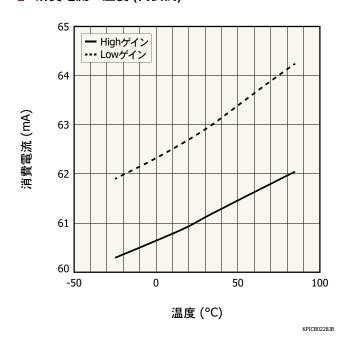


KPICB0200JA

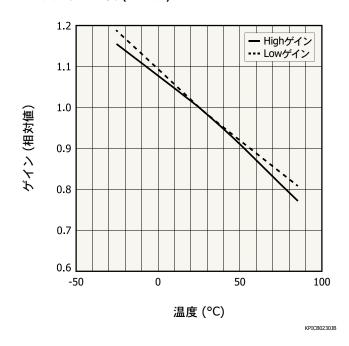
端子間容量−逆電圧

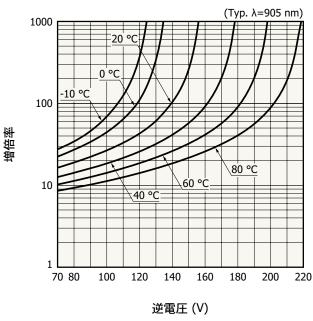


遭 增倍率 - 逆電圧



KPICB0202JC


➡ 周波数特性 (代表例)


計費電流−温度 (代表例)

፟ 増倍率−温度 (代表例)

- 増倍率−逆電圧

KPICB0242J

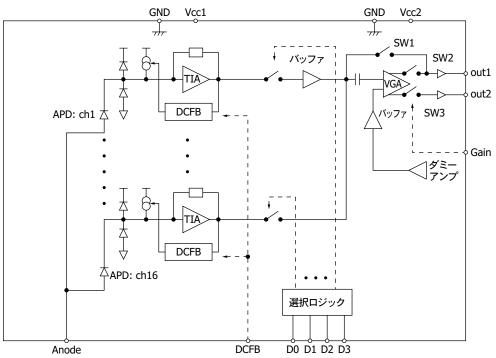
真理値表

■チャンネル

	D 0	D.4	D 0	1114
D3	D2	D1	D0	出力
0	0	0	0	ch1
0	0	0	1	ch2
0	0	1	0	ch3
0	0	1	1	ch4
0	1	0	0	ch5
0	1	0	1	ch6
0	1	1	0	ch7
0	1	1	1	ch8
1	0	0	0	ch9
1	0	0	1	ch10
1	0	1	0	ch11
1	0	1	1	ch12
1	1	0	0	ch13
1	1	0	1	ch14
1	1	1	0	ch15
1	1	1	1	ch16

■ゲイン

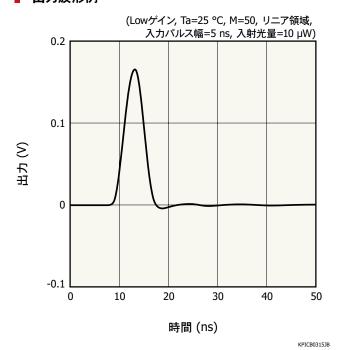
設定	ゲイン
0	Lowゲイン (× 1)
1	Highゲイン (× 20)

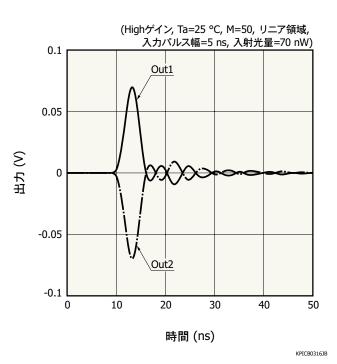

■DCフィードバック回路

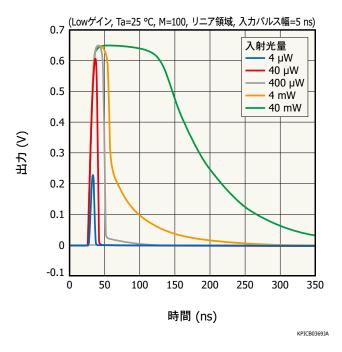
設定	外乱光除去機能		
0	ON		
1	OFF		

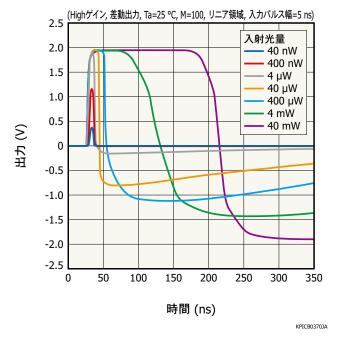
注) 0: Vcc × 0.2 V以下, 1: Vcc × 0.8 V以上

デジタル入力端子は、IC内蔵の10 kΩにてプルダウンされています。

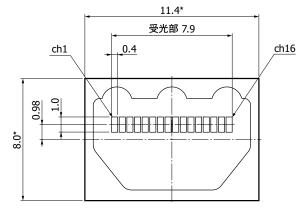

🏲 ブロック図

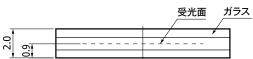


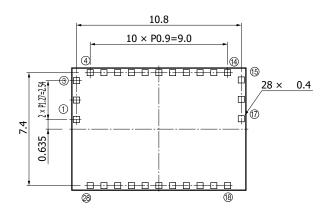

KPICC0287JF



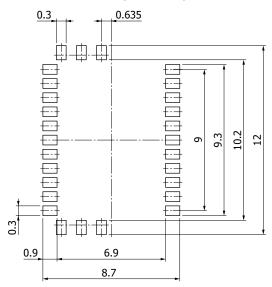
➡ 出力波形例







📴 外形寸法図 (単位: mm)

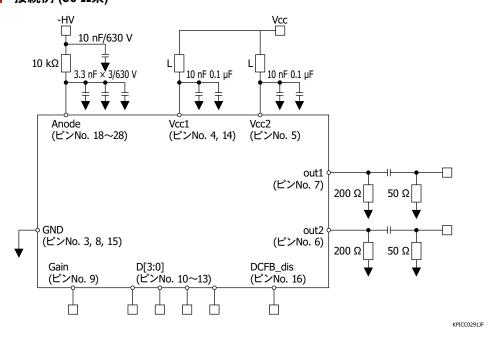

指示なき公差: ±0.2 チップ位置精度: * 印を位置基準として X, Y≦±0.2, θ≦±2°

➡ ピン接続

ピンNo.	機能	ピンNo.	機能
1	NC	15	GND
2	NC	16	DCFB_dis
3	GND	17	NC
4	Vcc1	18	Anode
5	Vcc2	19	Anode
6	out2	20	Anode
7	out1	21	Anode
8	GND	22	Anode
9	Gain	23	Anode
10	D3	24	Anode
11	D2	25	Anode
12	D1	26	Anode
13	D0	27	Anode
14	Vcc1	28	Anode

1, 2, 17端子は開放とし、Vcc1、Vcc2、GNDに接続しないでください。

- 推奨ランドパターン (単位: mm)


➡ 受光部拡大図 (単位: mm)

KPICC0289JB

KPICA0101JF

늘 接続例 (50 Ω系)

フロントエンドIC付光センサを50 Ω 系にて使用する場合、出力負荷 Out1、Out2には同じ値の抵抗 (上図では200 Ω)を接続してください。出力負荷に同じ値の抵抗を接続していないと、波形が乱れたり、出力が発振したりする恐れがあります。

➡ APD増倍率の温度特性の対策

フロントエンドIC付光センサに内蔵されているAPDの増倍率は、温度によって変化します。広い温度範囲で使用する場合の対策としては、以下の2つの方式があります。

①温度変化に合わせて逆電圧を制御する温度補正方式

APDの近くにサーミスタなどの温度センサを配置し、APDの温度を測定します。APDの温度補正後の逆電圧は、APDの温度 Tを用いて以下の式で表されます。

VR (温度補正後) = VR (25 °C時) + (T - 25) × △TVBR

②APDの温度を一定に保つ温度制御方式

電気冷却素子などを用いて、APDの温度を一定に制御します。

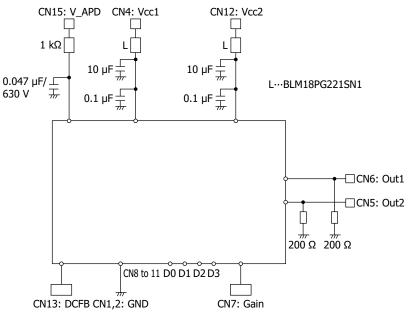
■ 推奨はんだ付け条件

時間

KPICC03461A

- ・本製品は、鉛フリーはんだ付けに対応しています。なお、梱包開封後は、温度 30°C以下、湿度 60%以下の環境で保管して 24時間以内にはんだ付けをしてください。
- ・使用する基板・リフロー炉によって、リフローはんだ付け時に製品が受ける影響が異なります。リフローはんだ条件の設定時には、 あらかじめ実験を行って、製品に問題が発生しないことを確認してください。

] 関連情報


www.hamamatsu.com/sp/ssd/doc_ja.html

- ■注意事項
- ・製品に関する注意事項とお願い
- ・使用上の注意/メタル・セラミック・プラスチックパッケージ製品
- ・使用上の注意/表面実装型製品
- カタログ
- ・セレクションガイド/フォトIC

フロントエンドIC付光センサ評価キット C13666-03

フロントエンドIC付光センサ S13645-01CRを搭載した評価キットを用意しています。詳細は、 当社営業までお問い合わせください。

等価回路

KPICC0310EA

本資料の記載内容は、令和6年11月現在のものです。

製品の仕様は、改良などのため予告なく変更することがあります。本資料は正確を期するため慎重に作成されたものですが、まれに誤記などによる誤りがある場合があります。本製品を使用する際には、必ず納入仕様書をご用命の上、最新の仕様をご確認ください。

本製品の保証は、納入後1年以内に瑕疵が発見され、かつ弊社に通知された場合、本製品の修理または代品の納入を限度とします。ただし、保証期間内であっても、 天災および不適切な使用に起因する損害については、弊社はその責を負いません。

本資料の記載内容について、弊社の許諾なしに転載または複製することを禁じます。

浜松ホトニクス株式会社

www.hamamatsu.com

仙台市青葉区中央3-2-1 (青葉通プラザ11階)	TEL (022) 267-0121 FAX (022) 267-0135
東京都千代田区大手町2-6-4 (常盤橋タワー11階)	TEL (03) 6757-4994 FAX (03) 6757-4997
浜松市中央区砂山町325-6 (日本生命浜松駅前ビル)	TEL (053) 459-1112 FAX (053) 459-1114
大阪市中央区安土町2-3-13 (大阪国際ビル10階)	TEL (06) 6271-0441 FAX (06) 6271-0450
福岡市博多区博多駅東1-13-6 (いちご博多イーストビル5階)	TEL (092) 482-0390 FAX (092) 482-0550
	東京都千代田区大手町2-6-4 (常盤橋タワー11階) 浜松市中央区砂山町325-6 (日本生命浜松駅前ビル) 大阪市中央区安土町2-3-13 (大阪国際ビル10階)

固体営業推進部 〒435-8558 浜松市中央区市野町1126-1 TEL (053) 434-3311 FAX (053) 434-5184