

Color sensors

S13683-03DT/-04DS

I²C interface-compatible color sensor

The S13683-03DT/-04DS is a digital color sensor that supports the I²C (inter-integrated circuit) interface. It is sensitive to red (λ =615 nm), green (λ =530 nm), and blue (λ =460 nm) light, and outputs detected results as 16-bit digital data for each color. The photodiode for each color is automatically switched sequentially to perform measurements. The sensitivity and integration time can be adjusted so that light measurements can be performed over a wide range.

Features

Applications

- I²C interface compatible
- Sequential measurements of red, green, blue light, and correction channel
- Correction channel The channels detect incident light that does not pass the filter. To obtain high accuracy RGB data, it is necessary to subtract the correction channel output with
- external processing.
- 2-step sensitivity switching (sensitivity ratio 1 : 10)
- Sensitivity adjustment by setting the integration time
- Low voltage (2.5 V or 3.3 V) operation
- Low current consumption: 75 μA typ.
- With internal infrared-cut filter
- Wide dynamic range (Low gain: 1 to 10 klx)
- Standard packing state S13683-03DT: reel S13683-04DS: stick

- LCD backlight adjustment for cell phones, notebook PC, etc.
- Energy-saving sensor for large-size TV, etc.
- Various types of light detection or color adjustment

Absolute maximum ratings

Parameter	Symbol	Condition	Value	Unit
Supply voltage	Vdd	Ta=25 °C	-0.3 to +4.5	V
Output current	Io	Ta=25 °C	±10	mA
Power dissipation	Р	Ta=25 °C	300	mW
Operating temperature	Topr	No dew condensation*1	-40 to +85	°C
Storage temperature	Tstg	No dew condensation*1	-40 to +105	°C
Soldering temperature* ²	Tsol		240 (once)	°C

*1: When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.

*2: Reflow soldering, IPC/JEDEC J-STD-020 MSL 5a, see P. 10

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Recommended operating conditions (Ta=25 °C unless otherwise noted)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vdd		2.25	-	3.63	V
I ² C bus pull-up voltage* ³	Vbus	Rp=2.2 k <u>Ω</u>	1.65	-	Vdd + 0.5	V
High level input voltage (SDA, SCL)*4	Vih	Vbus≥2.25 V Vdd>2.75 V	0.7Vbus	-	Vdd + 0.5	V
night level hiput voltage (SDA, SCL)	VIII	Vbus<2.25 V Vdd≤2.75 V	0.8Vbus	-	Vdd + 0.5	V
Low level input voltage (SDA, SCL)*4	Vil	Vbus≥2.25 V Vdd>2.75 V	-0.5	-	0.2Vbus	V
Low level input voltage (SDA, SCL)	VII	Vbus<2.25 V Vdd≤2.75 V	-0.5	-	0.3Vbus	V
Bus capacitance (SDA, SCL)	Cbus		-	-	400	pF

*3: For details, see the I²C specifications, "The I²C-BUS SPECIFICATION VERSION 2.1".

*4: Vdd - Vbus<1.2 V

Operation is not guaranteed if this condition is not met.

Electrical and optical characteristics

Sensor section [Ta=25 °C, Vdd=Vbus=3.3 V, A light source, unless otherwise noted (initial setting: low gain, integration time: 546 ms/ch)]*5

Parame	ter	Symbol	Cone	dition	Min.	Тур.	Max.	Unit
			Blue			400 to 540		
Spectral response r	ange*6	λ	Green				nm	
			Red					
			Blue		-	460	-	
Peak sensitivity way	velength	λр	Green		-	530	-	nm
			Red		-	615	-	
Current consumption	Operating mode	Idd	E=0 lx (dark s	tate),	30	75	150	
Current consumption	Standby mode	Idds	excluding outp	out current	0.1	1.0	3.0	-μΑ
Dark count		Sd	E=0 lx (dark s	tate)	-	-	5	counts
Gain ratio		rg	High gain/Low	r gain	-	10	-	-
		Sbl	Blue		2.0	3.8	5.6	
		Sgl	Green	Initial cotting	4.7	8.7	12.7	
		Srl	Red	Initial setting	6.8	12.4	18.0	
Photosensitivity		Scol	Correction ch		-	3.0	-	countr//
	Low gain	Sbl	Blue		2.8	3.8	4.8	counts/lx
		Sgl	Green	Initial setting*6	6.5	8.7	11.0	
		Srl	Red	Initial setting	8.6	12.4	16.2	
		Scol	Correction ch		-	3.0	-	
Red/Blue sensi. ratio	0	Srl/Sbl	Traitial actting		2.4	3.2	4.0	
Red/Green sensi. ratio	Low gain	Srl/Sgl	Initial setting Same chip		1.05	1.4	1.75	-
Blue/Green sensi. ratio	0	Sbl/Sgl			0.33	0.44	0.55	
		Sbh	Blue		22.0	40.0	58.0	
		Sgh	Green	Integration time	47.0	86.0	125.0	
		Srh	Red	546 ms/ch	67.0	122.0	177.0	
Photosensitivity	High gain	Scoh	Correction ch		-	30.0	-	counts/lx
FILLOSEIISILIVILY	riigir gairi	Sbh	Blue		30.0	40.0	50.0	
		Sgh	Green	Integration time	64.5	86.0	107.5	
		Srh	Red	546 ms/ch*7	85.0	122.0	159.0	
		Scoh	Correction ch		-	30.0	-	
Red/Blue sensi. ratio		Srh/Sbh	Integration the	a FAG malat	2.25	3.0	3.75	
Red/Green sensi. ratio	High gain	Srh/Sgh	Integration tin Same chip	ie 546 ms/ch	1.05	1.40	1.75	
Blue/Green sensi. ratio		Sbh/Sgh			0.35	0.47	0.59	

*5: Provide light shielding so that no light enters from anywhere other than the top surface of the filter.

*6: Relative sensitivity=more than 10%

*7: Integration time is measured and corrected. See "Compensation method for sensitivity variation". Integration time measurement accuracy is 0.36%.

Parame	Parameter Symbol		Condition	Min.	Тур.	Max.	Unit	
I ² C address ADD			7 bits		0x2A (0101010)			
I ² C clock frequency	/	fclk		1	-	400	kHz	
SDA, SCL output	High level	Voh	Rp=2.2 kΩ	0.7 Vbus	-	-	V	
voltage	Low level	Vol	Rp=2.2 kΩ	0	-	0.4	V	
Input/output termin	al capacitance	Ci		-	-	20	pF	
SDA/SCL output fa	ll time* ⁸	tf	Rp=2.2 kΩ, Cp=400 pF	-	-	250	ns	

■ I²C section (Ta=25 °C, Vdd=3.3 V, unless otherwise noted)

*8: SCL/SDA output rise time is determined by a time constant of Cbus × Rp.

Note: The I²C interface (SDA, SCL) timings conform to the "I²C bus specification version 2.1 ".

Register map

Adrs	Function					bit							
Aurs	runction	7	6	5	4	3	2	1	0				
00	Control	ADC reset 1: Reset 0: Operation	1: Stanuby mode	Standby function monitor	-	Gain selection 1: High gain 0: Low gain	1: Manual setting mode	Integration (00) 87.5 μs, (10) 22.4 ms,	(01) 1.4 ms				
01	Manual timing register		Integration time manual setting register (MSB)										
02				Integrati	on tin	ne manual se	tting register (LSB)						
03	Sensor data register				Ou	tput data (re	d, MSB)						
04	(red)				Οι	ıtput data (re	ed, LSB)						
05	Sensor data register				Out	put data (gre	en, MSB)						
06	(green)				Out	put data (gre	en, LSB)						
07	Sensor data register			·	Out	tput data (blu	ue, MSB)						
08	(blue)		Output data (blue, LSB)										
09	Sensor data register			Οι	Itput	data (correct	ion ch, MSB)						
0A	(correction ch)			0	utput	data (correct	tion ch, LSB)						

Adrs 00 bit 7: Asserting this bit to "1", the ADC block is reset. The register data is not reset. To start the operation, set this bit to "0". Adrs 00 bit 6: Asserting this bit to "1" the device goes into standby mode. The ADC block stops its operation. The register data is not reset. To start the operation, set this bit to "0".

Adrs 00 bit 5: This monitors auto standby function. "1" means standby mode. This is read only.

Adrs 00 bit 3: Gain selection bit. "1" is high gain mode and "0" is low gain mode. This bit is selecting the photodiode area. The size ratio of high gain photodiode area and low gain photodiode area is 10 : 1. Therefore the gain ratio is 10 times from low to high.

Adrs 00 bit 2: Asserting this bit to "1", the device goes into manual setting mode. Deasserting this bit to 0, goes into fixed period mode. In manual setting mode, the S11059-02DT automatically goes to standby mode after a measurement is made. In fixed period mode, measurements are continuously repeated.

Adrs 00 bit 1,0: These bits select the period of internal basis clock. The period is equal to integration time per color in fixed period mode. "00" is 87.5 us, "01" is 1.4 ms, "10" is 22.4 ms, "11" is 179.2 ms. In manual setting mode, "00" is 175 µs, "01" is 2.8 ms, "10" is 44.8 ms, "11" is 368 ms. The integration time per color is set to multiple value (Adrs 01 & 02) with the period.

Adrs 01 & 02: This is a multiple value setting in manual setting mode, and can be set to a minimum of 0x0000 and a maximum of 0xFFFF (65535). This is used to set how far to expand the integration time per color which specified by "Integration time setting" (Tint). For example, if you want to set the integration time per color to 546 ms, set 175 µs by Tint="00" and then set this register to N=3120 (0xC30).

Mode	Manual timing register	Integration time setting (Tint)								
Mode	(Adrs 01 & 02)	00	01	10	11					
Fixed period mode	Disabled	87.5 μs	1.4 ms	22.4 ms	179.2 ms					
Manual setting mode	N	175 × N µs	$2.8 \times N ms$	44.8 × N ms	358.4 × N ms					

Adrs 03 to 0A: These bytes are register for sensor data. S11059-02DT measurement result is stored in these registers when the I²C command is changed to read mode. The values are kept until the next measurement cycle.

Initial setting [Low gain, manual setting mode, Tint=00 (175 μs), integartion time 546 ms/ch]

Adrs	Function				b	it				Hex
Aurs	FUNCTION	7	6	5	4	3	2	1	0	пех
00	Control	1	1	1	-	0	1	0	0	0xE4
01	Manual timing register	0	0	0	0	1	1	0	0	0x0C
02	Manual timing register	0	0	1	1	0	0	0	0	0x30

Program example

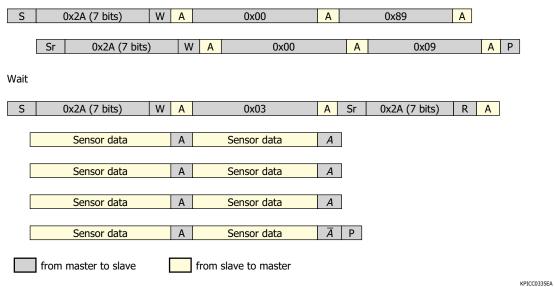
Condition 1: Initial setting [manual setting mode, low gain, Tint=00 (175 µs), integration time 546 ms/ch (0x0C30 is set in manual timing register)]

Command

Action				Data	body				Ack	Remark
Address call (0x2A) S	0	1	0	1	0	1	0	W	Α	7-bit address
Register call (0x00)	0	0	0	0	0	0	0	0	Α	Calls control byte
Register write (0x84)	1	0	0	0	0	1	0	0	Α	ADC reset, standby disabled
Address call (0x2A) Sr	0	1	0	1	0	1	0	W	Α	Restart, address
Register call (0x00)	0	0	0	0	0	0	0	0	Α	Calls control byte
Register write (0x04)	0	0	0	0	0	1	0	0	Α	P ADC reset disabled, bus release
			V	Vait Ic	nger	than	integr	ation	time ((>2184 ms)
Address call (0x2A) S	0	1	0	1	0	1	0	W	Α	7-bit address
Register call (0x03)	0	0	0	0	0	0	1	1	Α	Calls output data byte
Address call (0x2A) Sr	0	1	0	1	0	1	0	R	Α	Changes to read mode
Data read out (R: MSB)	Х	X	Х	Х	Х	Х	Х	Х	A	Red data output
Data read out (R: LSB)	Х	X	Х	Х	Х	Х	Х	Х	A	
Data read out (G: MSB)	X	X	Х	Х	Х	Х	Х	Х	A	Green data output
Data read out (G: LSB)	Х	X	Х	Х	Х	X	Х	Х	A	
Data read out (B: MSB)	Х	X	Х	Х	Х	Х	Х	Х	A	Blue data output
Data read out (B: LSB)	Х	X	Х	Х	Х	X	Х	Х	A	
Data read out (Correction ch: MSB	X	X	Х	Х	Х	Х	Х	Х	A	Correction ch data output
Data read out (Correction ch: LSB	X	X	Х	Х	Х	Х	Х	Х	Ā	P

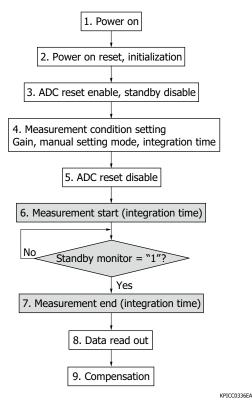
S=Start condition, Sr=Restart condition, A=Acknowledge, A=Acknowledge by host, P=Stop condition, R=Read mode (1), W=Write mode (0), \overline{A} =not acknowledge

S		0x2A (7 bits)	W	A		0x00			0x84	A		
-												
	Sr	0x2A (7 bits))	W	Α	0x00		Α	0x04		Α	Ρ
Wait												
S		0x2A (7 bits)	W	Α		0x03	Α	Sr	0x2A (7 bits)	R	А	
[Sensor data		А		Sensor data	Α]				
r												
		Sensor data		Α		Sensor data	A	J				
r								1				
l		Sensor data		A		Sensor data	A	J				
ſ		Sensor data		A		Sensor data	Ā	Р				
L				7.		School data	71	•				


Condition 2 [fixed period mode, high gain, Tint=01 (1.4 ms), integration time 1.4 ms/ch]

Command

Action				Data	body				Ack	Remark
Address call (0x2A) S	0	1	0	1	0	1	0	W	Α	7-bit address
Register call (0x00)	0	0	0	0	0	0	0	0	Α	Calls control byte
Register write (0x89)	1	0	0	0	1	0	0	1	Α	ADC reset, standby disabled
Address call (0x2A) Sr	0	1	0	1	0	1	0	W	Α	7-bit address
Register call (0x00)	0	0	0	0	0	0	0	0	Α	Calls control byte
Resistor write (0x09)	0	0	0	0	1	0	0	1	Α	P ADC reset disabled, bus release
Wait longer t	han i	ntegr	ation	time	(> 5.	6 ms). Wit	thin t	his pei	riod, repeat measurement is continued.
Address call (0x2A) S	0	1	0	1	0	1	0	W	Α	7-bit address
Register call (0x03)	0	0	0	0	0	0	1	1	Α	Calls output data byte
Address call (0x2A) Sr	0	1	0	1	0	1	0	R	Α	Changes to read mode
Data read out (R: MSB)	Х	Х	Х	Х	Х	Х	Х	X	Α	Red data output
Data read out (R: LSB)	Х	Х	Х	Х	Х	Х	Х	Х	Α	
Data read out (G: MSB)	Х	Х	Х	Х	Х	Х	Х	X	Α	Green data output
Data read out (G: LSB)	Х	Х	Х	Х	Х	Х	Х	X	Α	
Data read out (B: MSB)	Х	Х	Х	Х	Х	Х	Х	Х	Α	Plue data output
Data read out (B: LSB)	Х	Х	Х	Х	Х	Х	Х	X	Α	Blue data output
Data read out (Correction ch: MSB)	Х	Х	Х	Х	Х	Х	Х	Х	Α	Correction ch data output
Data read out (Correction ch: LSB)	Х	Х	Х	Х	Х	Х	Х	Х	Ā	P


S=Start condition, Sr=Restart condition, A=Acknowledge, A=Acknowledge by host, P=Stop condition, R=Read mode(1), W=Write mode(0), \overline{A} =not acknowledge

Format

Compensation method for sensitivity variation

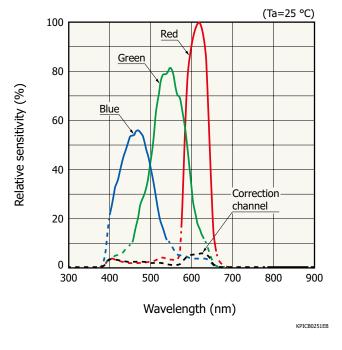
Sensitivity variation can be decreased using the compensation coefficient which is calculated from the integration time measurement result. Explanation of compensation method is shown as follows.

Integration time measurement method

In case of integration time measurement, it is necessary to set manual setting mode. The integration time measurement starts after "ADC reset" disabled. To measure the finishing integration time (measurement) Tmeas, check "Standby monitor" bit until it becomes to "1".

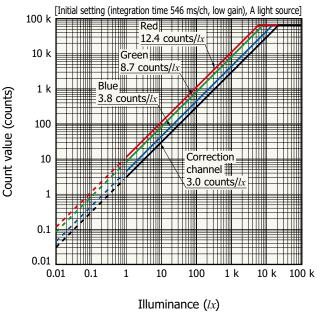
Compensation method

The sensitivity compensation that used integration time is as follows:


$$\begin{split} & \mathsf{K} = \frac{\mathsf{Tset}}{\mathsf{Tmeas}} \\ & \mathsf{S'} = \mathsf{S} \cdot \mathsf{K} \\ & \mathsf{K} \qquad : \mathsf{compensation coefficient} \\ & \mathsf{Tset} \qquad : \mathsf{integration time (setting)} \\ & \mathsf{Tmeas: integration time (measurement)} \\ & \mathsf{S} \qquad : \mathsf{photo sensitivity (measurement)} \\ & \mathsf{S'} \qquad : \mathsf{photo sensitivity (compensation)} \end{split}$$

Measurement accuracy of integration time

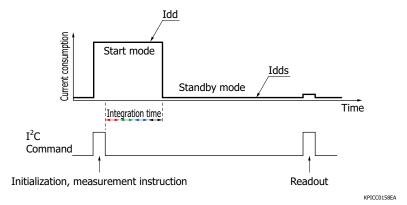
The measurement minimum resolution of Tmeas is defined by the looping duration (Tunit). In case of default setting, the Tset is 2184 ms and assuming the Tunit to 7.8 ms, the accuracy of integration time is calculated by following formula.

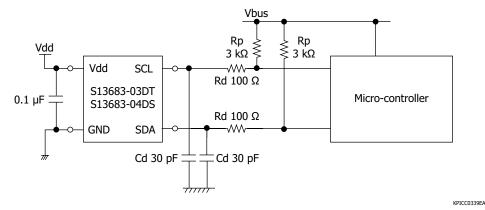

$$\frac{\text{Tunit}}{\text{Tset}} \times 100 = \frac{7.8}{2184} \times 100 = 0.36\%$$

The specification of compensated sensitivity is defined as 0.36% accuracy.

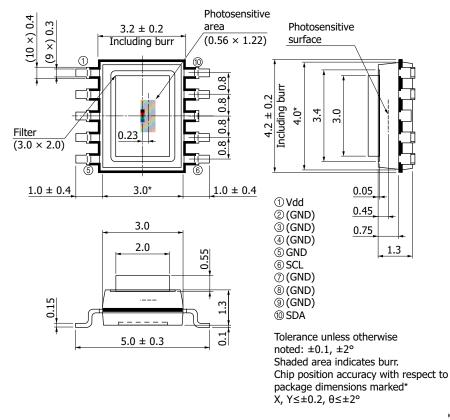
Spectral response (typical example)


Count value vs. illuminance (typical example)

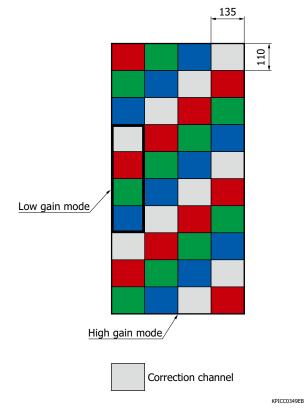

KPICB0252EB


Block diagram

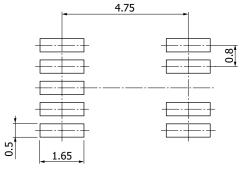
Timing chart of standby function



Connection example



Dimensional outline (unit: mm)

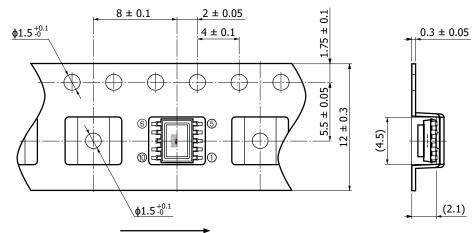


- Details of photosensitive area (unit: μm)

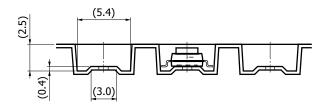
Recommended land pattern (unit: mm)

KPICA0111ED

KPICC0223EA

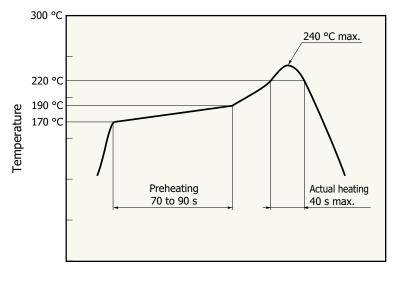


Reel packing specifications (S13683-03DT)


Reel (conforms to JEITA ET-7200)

Outer diameter	Hub diameter	Tape width	Material	Electrostatic characteristics
φ254 mm	ф80 mm	12 mm	PS (polystyrene)	Conductive

Embossed tape (unit: mm, material: PS, conductive)


KPICC0197EB

- Packing quantity 1500 pcs/reel
- Packing type

Reel and desiccant in moisture-proof packaging (vacuum-sealed)

Recommended soldering condition

Time

KPICB0164EC

- This product supports lead-free soldering. After unpacking, store it in an environment at a temperature of 30 °C or less and a humidity of 60% or less, and perform soldering within 24 hours.
- The effect that the product receives during reflow soldering varies depending on the circuit board and reflow oven that are used. Before actual reflow soldering, check for any problems by testing out the reflow soldering methods in advance.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- \cdot Disclaimer
- \cdot Surface mount type products

Evaluation kit for color sensors C15701-01

An evaluation kit [60 mm (H) × 21.5 mm (V)] is available for the S13683-03DT/-04DS color sensors (with S13683-03DT/-04DS). Contact us for detailed information.

Information described in this material is current as of January 2024.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Chuo-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

1126-1 IChino-cho, Chuo-ku, Hamamatsu City, 435-8536 Japan, Ielephone: (1)908-231-950, fax: (1)908-231-950, fax: (3)9852-375-0, fax: (4)98152-375-0, fax: (3)98152-375-0, fax: (3)98162-388152, fax: (3)99162-3988, fax: (4)91707-325777-6-mail: info@hamamatsu.co.uk North Europe: HAMAMATSU PHOTONICS TALIS ALL. Strad adle ladia, in 1a: 6004 Arese (Milano), Italy, Telephone: (4)98-509-031-00, fax: (4)98-509-031-00, fax: (4)98-509-031-00, fax: (5)912-63817-0, fax: (5)912-6381-7, fax: (5)91