

CCD area image sensors

S16000-1007, S16001-1007S

High sensitivity in the near infrared region: QE=36% (λ =1000 nm), back-thinned type

This FFT-CCD for measurement has improved sensitivity in the near infrared region of 800 nm or above. In addition to having near infrared high sensitivity, it can be used as an image sensor having a long side aligned along the height direction of the photosensitive area by doing the binning operation, which makes it suitable as a detector for Raman spectroscopy. The binning operation offers significant improvement in S/N and signal processing speed compared with methods by which signals are digitally added by an external circuit.

Pixel size is 24 \times 24 μ m and the photosensitive area size is 24.576 (H) \times 2.928 (V) mm (number of effective pixels: 1024 \times 122 pixels). Pin layout and drive conditions are the same as the Hamamatsu S7030/S7031 series.

Features

The set of the sensitivity: QE=36% (λ =1000 nm)

- Pixel size: 24 × 24 µm
- Line/pixel binning capabilities
- MPP operation

Spectral response (without window)*1

KMPDB0648E

*1: Sensitivity decreases depending on the spectral transmittance characteristics of the window material.

- Applications

Raman spectroscopy, etc.

1

Structure

Parameter	S16000-1007	S16001-1007S	Unit		
Pixel size (H \times V)	24 >	24 × 24			
Total number of pixels $(H \times V)$	1044	× 128	pixels		
Number of effective pixels $(H \times V)$	1024	× 122	pixels		
Image size (H \times V)	24.576 × 2.928				
Vertical clock	Two-phase				
Horizontal clock	Two-phase				
Output circuit	One-stage MOSFE	One-stage MOSFET source follower			
Package	24-pin ceramic DIP (refer to dimensional outlines)		-		
Window material*2	Quartz glass* ³	AR-coated sapphire*4	-		
Cooling	Non-cooled	One-stage TE-cooled	-		

*2: Window-less type (ex. S16000-1007N) is available upon request. (Temporary window is fixed by tape to protect the CCD chip.) *3: Resin sealing

*4: Hermetic sealing

Absolute maximum ratings (Ta = 25°C)

Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
Operating temperature*5	No dew condensation*6	Topr	-50	-	+50	°C
Storage temperature	No dew condensation*6	Tstg	-50	-	+70	°C
Output transistor drain voltage		Vod	-0.5	-	+25	V
Reset drain voltage		Vrd	-0.5	-	+18	V
Vertical input source voltage		VISV	-0.5	-	+18	V
Horizontal input source voltage		VISH	-0.5	-	+18	V
Vertical input gate voltage		Vigiv, Vigiv	-10	-	+15	V
Horizontal input gate voltage		Vig1h, Vig2h	-10	-	+15	V
Summing gate voltage		Vsg	-10	-	+15	V
Output gate voltage		Vog	-10	-	+15	V
Reset gate voltage		Vrg	-10	-	+15	V
Transfer gate voltage		Vtg	-10	-	+15	V
Vertical shift register clock voltage		VP1V, VP2V	-10	-	+15	V
Horizontal shift register clock voltage		Vp1h, Vp2h	-10	-	+15	V
Maximum current of TE-cooler*7	Tc*8=Th*9=25 °C	Imax	-	-	3.0	A
Maximum voltage of TE-cooler	Tc*8=Th*9=25 °C	Vmax	-	-	3.6	V
Maximum temperature of heat radiation side	*10	-	-	-	70	°C
Thermistor power dissipation		Pd_th			1.3	mW

*5: Package temperature (S16000-1007), chip temperature (S16001-1007S)

*6: When there is a temperature difference between a product and the surrounding area in high humidity environments, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.

*7: When the current value exceeds Imax, the heat absorption rate begins to decrease due to the Joule heat. Note that this maximum current Imax is not the threshold for damaging the cooler. To protect the TE-cooler and maintain stable operation, the supply current should be less than 60% of this maximum current.

*8: Temperature of the cooling side of the TE-cooler

*9: Temperature of the heat radiation side of the TE-cooler

*10: Vacuum condition

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Operating conditions (MPP mode, Ta=25 °C)

	Parameter		Symbol	Min.	Тур.	Max.	Unit	
Output tran	sistor drain voltage	e	Vod	18	20	22	V	
Reset drain	voltage		Vrd	11.5	12	12.5	V	
Output gate	e voltage		Vog	1	3	5	V	
Substrate v	oltage		Vss	-	0	-	V	
	Vertical input sour	rce	VISV	-	Vrd	-	V	
Tost point	Horizontal input s	ource	VISH	-	Vrd	-	V	
iest point	Vertical input gate	3	VIG1V, VIG2V	-9	-8	-	V	
	Horizontal input g	ate	VIG1H, VIG2H	-9	-8	-	V	
Vortical shift	rogistor clock valtage	High	VP1VH, VP2VH	4	6	8	V	
	register clock voltage	Low	VP1VL, VP2VL	-9	-8	-7	V	
Horizontal chif	t register cleck voltage	High	Vp1hh, Vp2hh	4	6	8	N N	
	L TEGISLET CIUCK VUILAGE	Low	VP1HL, VP2HL	-9	-8	-7	V	
Cumming a	ata valtaga	High	Vsgh	4	6	8		
Summing g	ale vollage	Low	VSGL	-9	-8	-7	v	
Docot goto	voltago	High	Vrgh	4	6	8	V	
Resel yale	voltage	Low	VRGL	-9	-8	-7	V	
Transfor an	to voltago	High	Vtgh	4	6	8	V	
nansier ga	le vollage	Low	Vtgl	-9	-8	-7	V	
External loa	ad resistance		RL	20	22	24	kΩ	

Electrical characteristic (Ta=25 °C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Signal output frequency	fc	-	0.25	1	MHz
Line rate	LR	-	160	387	Hz
Vertical shift register capacitance	CP1V, CP2V		3000	-	pF
Horizontal shift register capacitance	Ср1н, Ср2н	-	180	-	pF
Summing gate capacitance	Csg	-	30	-	pF
Reset gate capacitance	Crg	-	30	-	pF
Transfer gate capacitance	Ctg	-	75	-	pF
Charge transfer efficiency*11	CTE	0.99995	0.99999	-	-
DC output level	Vout	14	16	18	V
Output impedance	Zo	-	3	4	kΩ
Power consumption*12	Р	-	13	14	mW

*11: Charge transfer efficiency per pixel, measured at half the saturation charge *12: Power consumption of the on-chip amp plus load resistance

Electrical and optical characteristics (Ta=25 °C, unless otherwise noted)

	Parameter		Symbol	Min.	Typ.	Max.	Unit
Saturatio	on output voltag	je	Vsat	-	Fw × CE	-	V
Coturotia	n charge	Vertical	D 11	200	280	-	kat
Saturatio	on charge	Horizontal*13		800	1000	-	ке
Conversi	on efficiency		CE	1.8	2.2	-	µV/e⁻
Dark curr	ont (MDD mode)	₁₄ 25 ℃	DC	-	200	1000	o ⁻ /pivol/c
Dark Curr	ent (MPP mode)	0 °C		-	20	100	e/pixel/s
Readout	noise*15		Nread	-	8	16	e⁻ rms
Dunamia	Line	binning	Drange	12500	125000	-	-
Dynamic	Area	scanning		50000	35000	-	-
Photores	sponse nonunifo	ormity*17	PRNU	-	±3	±10	%
Spectral	response range	2	λ	-	200 to 1100	-	nm
	Doint dofoct*18	White spot		-	-	0	-
Blemish Cluster de	Point delect **	Black spot]	-	-	10	-
	Cluster defect*	19] -	-	-	3	-
Column defect*20		*20	1	-	-	0	-

*13: Linearity=±1.5%

*14: Dark current nearly doubles for every 5 to 7 °C increase in temperature.

*15: Using a Hamamatsu evaluation circuit (chip temperature=-40 °C, operating frequency=20 kHz)

*16: Dynamic range = Saturation charge/Readout noise

*17: Measured at half the saturation output using an LED light (peak emission wavelength: 470 nm)

Photoresponse nonuniformity = $\frac{\text{Fixed pattern noise (peak to peak)}}{100 [\%]}$

Signal

*18: White spots

Pixels whose dark current is higher than 1 ke after one-second integration at a cooling temperature of 0 °C Black spots

Pixels whose sensitivity is lower than one-half of the average pixel output (measured with uniform light producing one-half of the saturation charge)

*19: 2 to 9 contiguous pixel defects

*20: 10 or more contiguous pixel defects

Spectral transmittance characteristics of window material

KMPDB0110FA

Device structure (conceptual diagram as viewed from top of dimensional outline)

Note: When viewed from the light input side, the horizontal shift register is covered by the thick area of the silicon (insensitive area), but long-wavelength light may pass through the insensitive silicon area. This light may be received by the horizontal shift register. Take measures such as shielding the light.

KMPDC0364EB

Timing chart (line binning)

Parameter		Symbol	Min.	Тур.	Max.	Unit
D11/ D21/ TC*21	Pulse width	Tpwv	6	8	-	μs
PIV, PZV, 1G	Rise and fall times	Tprv, Tpfv	10	-	-	ns
	Pulse width	Tpwh	500	2000	-	ns
P1H, P2H* ²¹	Rise and fall times	Tprh, Tpfh	10	-	-	ns
	Duty ratio	-	40	50	60	%
	Pulse width	Tpws	500	2000	-	ns
SG	Rise and fall times	Tprs, Tpfs	10	-	-	ns
	Duty ratio	-	40	50	60	%
RG	Pulse width	Tpwr	100	-	-	ns
	Rise and fall times	Tprr, Tpfr	5	-	-	ns
TG-P1H	Overlap time	Tovr	3	-	-	μs

*21: Symmetrical clock pulses should be overlapped at 50% of maximum pulse amplitude.

Parameter		Symbol	Min.	Тур.	Max.	Unit
D11/ D21/ TC*22	Pulse width	Tpwv	6	8	-	μs
PIV, PZV, 1G	Rise and fall times	Tprv, Tpfv	10	-	-	ns
	Pulse width	Tpwh	500	2000	-	ns
P1H, P2H* ²²	Rise and fall times	Tprh, Tpfh	10	-	-	ns
	Duty ratio	-	40	50	60	%
	Pulse width	Tpws	500	2000	-	ns
SG	Rise and fall times	Tprs, Tpfs	10	-	-	ns
	Duty ratio	-	40	50	60	%
RG	Pulse width	Tpwr	100	-	-	ns
	Rise and fall times	Tprr, Tpfr	5	-	-	ns
TG - P1H	Overlap time	Tovr	3	-	-	μs

*22: Symmetrical clock pulses should be overlapped at 50% of maximum pulse amplitude.

Dimensional outlines (unit: mm)

KMPDA0639EA

* Size of window that guarantees the transmittance in the "Specral transmittance characteristics of window material" graph

KMPDA0640EA

Pin connections

Dimme		S16000-1007		S16001-1007S	Note
Pin no.	Symbol	Function	Symbol	Function	(standard operation)
1	RD	Reset drain	RD	Reset drain	+12 V
2	OS	Output transistor source	OS	Output transistor source	RL=22 kΩ
3	OD	Output transistor drain	OD	Output transistor drain	+20 V
4	OG	Output gate	OG	Output gate	+3 V
5	SG	Summing gate	SG	Summing gate	Same timing as P2H
6	-		-		
7	-		-		
8	P2H	CCD horizontal register clock-2	P2H	CCD horizontal register clock-2	
9	P1H	CCD horizontal register clock-1	P1H	CCD horizontal register clock-1	
10	IG2H	Test point (horizontal input gate-2)	IG2H	Test point (horizontal input gate-2)	-8 V
11	IG1H	Test point (horizontal input gate-1)	IG1H	Test point (horizontal input gate-1)	-8 V
12	ISH	Test point (horizontal input source)	ISH	Test point (horizontal input source)	Connect to RD
13	TG*23	Transfer gate	TG*23	Transfer gate	Same timing as P2V
14	P2V	CCD vertical register clock-2	P2V	CCD vertical register clock-2	
15	P1V	CCD vertical register clock-1	P1V	CCD vertical register clock-1	
16	-		Th1	Thermistor	
17	-		Th2	Thermistor	
18	-		P-	TE-cooler (-)	
19	-		P+	TE-cooler (+)	
20	SS	Substrate (GND)	SS	Substrate (GND)	GND
21	ISV	Test point (vertical input source)	ISV	Test point (vertical input source)	Connect to RD
22	IG2V	Test point (vertical input gate-2)	IG2V	Test point (vertical input gate-2)	-8 V
23	IG1V	Test point (vertical input gate-1)	IG1V	Test point (vertical input gate-1)	-8 V
24	RG	Reset gate	RG	Reset gate	

*23: Isolation gate between vertical register and horizontal register. In standard operation, TG should be applied the same pulse as P2V.

Specifications of built-in TE-cooler (S16001-1007S, Typ., Vacuum condition)

Parameter	Symbol	Condition	Specification	Unit
Internal resistance	Rint	Ta=25 °C	1.2	Ω
Maximum heat absorption*24	Qmax		5.1	W

*24: This is a theoretical heat absorption level for correcting the temperature difference that occurs in the TE-cooler when the maximum current is supplied.

Specifications of built-in temperature sensor (S16001-1007S)

A thermistor chip is built into the same package with a CCD chip and monitors the operating CCD chip temperature. The relation between this thermistor's resistance and absolute temperature is expressed by the following equation.

 $RT1 = RT2 \times exp BT1/T2 (1/T1 - 1/T2)$

RT1: resistance at absolute temperature T1 [K] RT2: resistance at absolute temperature T2 [K] BT1/ T2: B constant [K]

The characteristics of the thermistor used are as follows. R298=10 k\Omega B298/323=3450 K

KMPDB0111EB

Precautions

- If the heat dissipation by the thermoelectric coolers during cooling is insufficient, the element temperature will increase and may cause physical damage to the product. Provide sufficient heat dissipation during cooling. As a measure to ensure heat dissipation, we recommend putting a material with high thermal conductivity (silicone, etc.) on the entire surface between the sensor and a heatsink (a metal block, etc.) and screwing it in place.
- \cdot When handling CCD sensors, always wear a wrist strap and also anti-static clothing, gloves, and shoes, etc. The wrist strap should have a protective resistor (about 1 M Ω) on the side closer to the body and be grounded properly. Using a wrist strap having no protective resistor is hazardous because you may receive an electrical shock if electric leakage occurs.
- \cdot Do not place the sensor directly on workbenches that may become charged with static electricity.
- \cdot Connect a ground wire to workbenches or floors in order to discharge static electricity.
- · Connect a ground wire also to the tools such as tweezers and soldering irons to be used for handling the sensor.

It is not always necessary to provide all the electrostatic countermeasures stated above. Implement these countermeasures according to the extent of deterioration or damage that may occur.

Temperature gradient rate for cooling or heating of element

When using an external coolerfor cooling CCDs, set the temperature gradient rate for cooling or heating the element to 5 K/minute or less.

Recommended soldering conditions

Parameter	Specification	Note	
Soldering temperature	260 °C max. (once, within 5 seconds)	At least 2 mm away from lead roots	

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- · Disclaimer
- · Image sensors

Technical note

 \cdot CCD image sensors

CCD multichannel detector heads C7040, C7041

📮 Features

- C7040: for S7030 series, S16000-1007 C7041: for S7031 series, S16001-1007S
- Area scanning or line binning operation
- Readout frequency: 250 kHz
- Readout noise: 20 e⁻ rms
- → ΔT=50 °C

(ΔT varies depending on the cooling method.)

Input	Symbol	Specification
	VD1	+5 Vdc, 200 mA
	VA1+	+15 Vdc, +100 mA
	VA1-	-15 Vdc, -100 mA
Supply voltage	VA2	+24 Vdc, 30 mA
	Vd2	+5 Vdc, 30 mA (C7041)
	Vp	+5 Vdc, 2.5 A (C7041)
	VF	+12 Vdc, 100 mA (C7041)
Master start	φms	HCMOS logic compatible
Master clock	Ame	HCMOS logic compatible,
	φίης	1 MHz

Multichannel detector head controller C7557-01

Features

- For control of multichannel detector head and data acquisition
- Easy control and acquisition using supplied software via USB interface

Connection diagram

Note: Shutter, etc. are not available.

KACCC0402EF

Information described in this material is current as of October 2023.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

1120-1 ICNINO-CRO, HIGBSNI-KU, HAMAMATSU LITY, 435-8558 JAPAN, IEEPINONE: (81)55-434-3311, FAX: (81)55-434-5184 U.S.A.: HAMAMATSU CORPORATION: 360 Foothill Road, Bridgewater, NJ 08807, U.S.A.; Telephone: (1)908-231-0960, Fax: (1)908-231-1218 Gemany: HAMAMATSU PHOTONICS DEUTSCHLAND GMBH: Arzbergerstr. 10, 82211 Herrsching am Ammersee, Germany, Telephone: (4)8152-375-0, Fax: (49)8152-265-8 E-mail: info@hamamatsu.de France: HAMAMATSU PHOTONICS RANCE S.A.R.L: 19 Rue du Saule Trapu, Par du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: info@hamamatsu.de United Kingdom: HAMAMATSU PHOTONICS S.A.R.L: 19 Rue du Saule Trapu, Par du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (49)107-29488, Fax: (441)707-325777 E-mail: info@hamamatsu.de North Europe: HAMAMATSU PHOTONICS NORDEN AB: Torshamsgatan 35, 16440 Kista, Sweden, Telephone: (40)8-509-031-01. E-mail: info@hamamatsu.se Italy: HAMAMATSU PHOTONICS ITALIA S.R.L: Strada della Moia, 1 int. 6 20044 Arese (Milano), Italy, Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41 E-mail: info@hamamatsu.if Italy: HAMAMATSU PHOTONICS (CHINA) CO, LTD: 120, Tower B, Jiaming Center, 27 Dongsanhuan Beliu, Chaoyang District, 100020 Beijng, RP. China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-6006, Fax: (86)10-6586-6006, Fax: (86)10-6586-6008, Fax: (86)10-6586-6008, Fax: (86)10-6586-6008, Fax: (86)10-6586-6008, Fax: (86)10-6586-6008, Fax: (86)10-6586-6008, Fax: (86)16-6586-6008, Fax: (86)16-6586-