X-ray TDI camera
C12300 series

The Pioneer of Inline X-ray Inspection

- **High speed readout**: Compatible with high speed up to 144 m/min
- **Wide area**: Maximum detection width: 293 mm
- **High resolution**: Pixel size: 48 μm
- **High sensitivity**: TDI 150 steps integration
Features of an X-ray TDI camera

TDI is a technology for achieving high-speed, high-resolution and high-sensitivity scanning over a wide area.

Time Delay Integration is a technology of scanning in which a frame transfer device produces a continuous video image of a moving object by means of a stack of linear arrays aligned with and synchronized to the motion of the object to be imaged in such a way that, as the image moves from one line to the next, the integrated charge moves along with it, providing higher resolution at lower light levels is possible with a line-scan camera.

Selectable two types of sensor arrangement

Highly versatile straight type (C12300-121, -321, -321B, -322, -323)

Arranging the sensors in a straight line enables images that are properly aligned with each other to be acquired continuously. High-definition images can be acquired in a variety of inline inspections. In the model below, there are dead spaces.

Overlapped type specialized for inspection of minute contaminants (C12300-461B)

Alternately arranging adjacent sensors to slightly overlap each other eliminates dead spaces. This type of sensor arrangement is specialized for inspection of minute contaminants that may fail to be detected owing to dead spaces. Images are outputted in a staggered manner as shown in the picture below.
This standard model has a detection width of 221 mm and compatible tube voltage of 130 kV. The user can choose from two models to suit the application, the C12300-321 that scans at a speed of 20 kHz or the C12300-322 that scans at a high speed of 30 kHz.

On this model, an ultra-high scan speed of 50 kHz has been achieved by shortening the detection width to 73 mm. This is ideal for capturing images of relatively small objects that are conveyed at high speed.

This model is compatible with tube voltages up to a maximum of 180 kV. It can be used for capturing images of metal or other hard substances that require high energy to transmit X-rays through.

This model supports X-ray inspection at low energy of 10 kV and upwards. It is ideal in capturing images of low-density or thin objects that are difficult to generate contrast on by irradiation of X-rays.

**Specifications**

<table>
<thead>
<tr>
<th>Type number</th>
<th>C12300-121</th>
<th>C12300-321</th>
<th>C12300-321B</th>
<th>C12300-322</th>
<th>C12300-323</th>
<th>C12300-461B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective X-ray tube voltage range*1</td>
<td>Approx. 25 kV to 130 kV</td>
<td>Approx. 10 kV to 110 kV</td>
<td>Approx. 25 kV to 130 kV</td>
<td>Approx. 25 kV to 180 kV</td>
<td>Approx. 10 kV to 110 kV</td>
<td></td>
</tr>
<tr>
<td>Number of pixels</td>
<td>1536 (H) × 150 (V)</td>
<td>4608 (H) × 150 (V)</td>
<td>6144 (H) × 150 (V)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray sensitive area</td>
<td>73.728 mm (H) × 7.2 mm (V)</td>
<td>221.1 mm (H) × 7.2 mm (V)</td>
<td>293.4 mm (H) × 7.2 mm (V)*2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line speed</td>
<td>0.864 m/min to 144.0 m/min</td>
<td>0.576 m/min to 57.6 m/min</td>
<td>0.576 m/min to 86.4 m/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDI line rate</td>
<td>1×1</td>
<td>Max. 50.0 kHz (144.0 m/min)</td>
<td>Max. 20.0 kHz (57.6 m/min)</td>
<td>Max. 30.0 kHz (86.4 m/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binning 2×2</td>
<td>Max. 40.0 kHz (230.4 m/min)</td>
<td>Max. 15.0 kHz (86.4 m/min)</td>
<td>Max. 25.0 kHz (144.0 m/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital interface</td>
<td>Camera Link</td>
<td>Base Configuration</td>
<td>Full Configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital output</td>
<td>12 bit</td>
<td>16 bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>DC +15 V</td>
<td>DC +15 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>Approx. 30 VA</td>
<td>Approx. 45 VA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>0 °C to +40 °C</td>
<td>0 °C to +40 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient operating humidity</td>
<td>30% to 80% (With no condensation)</td>
<td>30% to 80% (With no condensation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient storage temperature</td>
<td>−10 °C to +50 °C</td>
<td>−10 °C to +50 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient storage humidity</td>
<td>30% to 80% (With no condensation)</td>
<td>30% to 80% (With no condensation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1: Usable range of X-ray strength may vary depending on the tube current, the tube voltage and the distance.
*2: As sensors are the overlapped type, calculation is performed with overlap between sensors taken into consideration.
Lithium-ion batteries (LiB) are widely used as the power source of electric vehicles as a substitute for gasoline or as the batteries for smartphones and tablet terminals. Due to the increasing demand for LiBs, X-ray inspection for ensuring the quality of LiBs or for improving product yield is becoming more critical.

The C12300 series enables high-definition inline inspection due to its high resolution of 48 µm/pixel and its capability to acquire distortion-free images without stopping moving objects.

**Recommended models**

- C12300-121 (ultra high-speed model)
- C12300-321 (standard model)
- C12300-322 (standard model)
- C12300-323 (high energy-compatible model)
- C12300-461B (low energy-compatible / overlapped model)*

*As this is a overlapped type of sensor, boundary areas sometimes might not be completely matching when the output images are reconstructed as a single image, in particular, when capturing images of objects that have distinct thickness.

**Continuous imaging of moving objects**

X-ray TDI cameras can continuously inspect moving objects inline as they are brought into scanning range and without stopping objects such as metal sheets and separators that are fed in from roll to roll. Continuous inspection in this way means that these cameras can be applied in high-speed lines.

**Imaging of object locations without directing X-rays at an angle**

With X-ray inspection using 2D sensors, distortion sometimes occurs in images outside of the irradiation center of the X-ray source as a result of incident X-rays being directed at an angle to objects. This necessitates positional adjustment at each individual image capture point to ensure accurate inspection. Whereas, with X-ray TDI cameras, X-rays are irradiated at right angles to the carrying direction, and imaging is performed by integrating continuously captured images. As a result, distortion-free images can be acquired.
The C12300 series can acquire distortion-free images in the carrying direction, the positions of electrodes in laminated LiBs can be precisely inspected by scanning them in their lamination direction. High-resolution, high-speed inspection can be achieved by combining an X-ray TDI camera with a microfocus X-ray source.

The C12300-323 is compatible for capturing images using tube voltages up to a maximum of 180 kV. Even on winding LiBs that have thickness and that require high energy to transmit X-rays through, the positions of electrodes and their layers can be precisely inspected.

The C12300-121 can acquire images at a maximum scanning speed of 50 kHz. It is ideal for the high-speed inspection of cylindrical LiBs where many objects to be inspected are carried in continuously.

The C12300-461B has high sensitivity at the low tube voltage region and its sensors are configured in a staggered arrangement. As even minute contaminants on thin objects can be detected, it is ideal for the inspection of sheet materials such as cathodes and anodes, and separators on LiBs.
Developments in communications technology and automobiles have increased the demand for printed circuit boards (PCB) which are vital in our lives. This has resulted in higher demand for speed and accuracy in the inspection of defects on PCBs.

The C12300 series features high sensitivity and is compatible with fast line speeds. As a result, it helps improve cycle time in inspection of defects such as voids that occur in soldered parts of electronic components on PCBs, uneven coating, and cracks in substrates.

As a result of its bidirectional scanning function and compatibility with tube voltages up to a maximum of 180 kV, it is also compatible with a variety of PCBs.

### Recommended models

- C12300-321 (standard model)
- C12300-322 (standard model)
- C12300-323 (high energy-compatible model)

### Bidirectional scanning supported

The C12300 series is capable of bidirectional scanning (switching of scan direction to match the carrying direction). As a result, this series supports connection to differently oriented lines that use the same inspection systems and systems where scanning is performed in reverse when a defect is judged. It also helps improve cycle time in the inspection of large objects such as PCBs for servers.

### Imaging example

#### Inspection of voids in solder

- **Sample:** PCB of camera unit for driving assist system
- **Detector:** C12300-322
- **Tube voltage:** 130 kV
- **Magnification:** 5 times

As bidirectional scanning is supported, the C12300 series can efficiently scan the entire surface of PCBs mounted with electronic components, and can inspect voids in solder at high resolution.

#### Inspection of wire bonding

- **Sample:** ECU PCB
- **Detector:** C12300-323
- **Tube voltage:** 180 kV
- **Magnification:** 5 times

The C12300-323 is compatible with tube voltages up to a maximum of 180 kV. It is capable of transmitting X-rays through heat sinks and other metal parts to inspect for defects in wire bonding on PCBs.
More and more processed foods, such as frozen food and baby food, that make our lives more convenient are appearing on the market. Consequently, concern for safety and security of food has increased all the more, which has resulted in the demand for higher precision in the inspection of packages and detection of contaminants.

This low energy-compatible model of the C12300 series can also inspect soft objects that are difficult to generate contrast on, such as in the inspection of residual fish bones and in the inspection of food package bite-in, at high sensitivity.

**Recommended models**

C12300-321B (low energy-compatible model)

C12300-461B (low energy-compatible / overlapped model)*

* As this is a overlapped type of sensor, boundary areas sometimes might not be completely matching when the output images are reconstructed as a single image, in particular, when capturing images of objects that have distinct thickness.

**High sensitivity at low energy**

The X-ray incident sections and scintillators of the camera on the C12300-321B and C12300-461B have been specially designed to ensure low energy compatibility. This allows images to be acquired at high sensitivity at a tube voltage region lower than other models.

**Imaging example**

**Inspection of residual fish bones**

Sample: Fish slice  
Detector: C12300-321B  
Tube voltage: 50 kV  
Magnification: 1.1 times

The C12300 series has a resolution of 48 µm/pixel, which enables even small bones in sliced fish to be observed at high resolution.

**Inspection of package bite-in**

Sample: Crackers  
Detector: C12300-321B  
Tube voltage: 30 kV  
Magnification: 1.1 times

The C12300-321B has high sensitivity at the low tube voltage region. As a result, it can detect even bite-in of food packages that are difficult to generate contrast on.
System Configuration

* A standard configuration includes only the camera. The power supply unit, power cable, camera link cable and software API are available as the optional.
* When the C12300-461B is used, two camera link cables are required.
* The image display equipment (computer and frame grabber board), the X-ray source and shield box etc. should be prepared separately.

Options

<table>
<thead>
<tr>
<th>Type number</th>
<th>Product name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8206-60</td>
<td>Power supply unit</td>
<td></td>
</tr>
<tr>
<td>A13967-05</td>
<td>Power cable 5 m</td>
<td></td>
</tr>
<tr>
<td>A11255-05</td>
<td>Camera link cable SDR-MDR 5 m</td>
<td></td>
</tr>
</tbody>
</table>

Software

- DCAM-API https://dcam-api.com/
- Software API Support (Microsoft Windows)

Dimensional Outlines (Unit: mm)

The housing can be designed to custom dimensions. For details, please contact your Hamamatsu representative or distributor.