Picosecond fluorescence lifetime measurement system C11200

Captures fluorescence phenomena with 1 ps temporal resolution using 2D photon counting method. Enables simultaneous fluorescence lifetime analysis and time-resolved spectrophotometry.
Photoluminescence which is represented by fluorescence, phosphorescence, or delayed fluorescence is one of the energy release processes to be observed when molecules return from the excited state to the ground state. Measurement of photoluminescence decay with an ultra-fast pulsed excitation light is generally called as fluorescence lifetime measurement and studied to reveal various dynamics of excited molecules. Recently, development of various kinds of materials such as organic/inorganic phosphors, compound semiconductors, and quantum dots are getting more prosperous and are put into practical uses in the fields of the most advanced technologies such as OLED, LED, solar cell, and applied biology. The photoluminescence lifetime measurement is very important technique to improve the performance or efficiency of these materials.

The Hamamatsu Picosecond fluorescence lifetime measurement system has been developed in response to the requirements from researchers studying such materials. The streak camera, an optical time recorder with picosecond time response, makes it possible to study ultra-fast time-resolved spectrophotometry. The streak camera technology allows detection sensitivities in the photon counting region. For simultaneous measurement of time and wavelength, a spectrometer can be added to the system. The streak camera system is controlled by a designated software with high operation performance.

Applications

- Study of initial stages of photophysics and photochemistry
- Study of microscopic environments and dynamic structures of surfaces and interfaces
- Study of dynamic structures of 2D molecular aggregates such as macromolecule film, LB film, liquid crystal, and deposition film
- Study of exciton dynamics and quantum size effect (for example, semiconductor doped glass and quantum wire)
- Time-resolved fluorescence and phosphorescence spectrum evaluation of organic LED materials
- Study of photonic crystals
- Study, evaluation, and inspection related to fluorescence lifetime measurements in various other fields
Fluorescence phenomena at multiple wavelengths can be measured simultaneously.

Features

- 1 ps temporal resolution
 The system uses a streak camera that can achieve a temporal resolution of 1 ps.

- Simultaneous multi-wavelength measurement
 Time-resolved spectrum is acquired in a very short time since fluorescence lifetimes are measured over multiple wavelengths without scanning.

- Two-dimensional photon counting
 Ultra-high sensitivity and simultaneous multiple-wavelength measurement capabilities are realized by the combination of photon counting and streak camera techniques. Because fluorescence phenomena at multiple wavelengths can be measured simultaneously, even very-low fluorescence can be detected and measured with high efficiency, a feature not available with previous methods.

- A wide dynamic range better than 100 000 : 1
 Measures very-low fluorescence with a dynamic range better than 100 000 : 1. This allows the analysis of multi-component fluorescence lifetime with high accuracy.

- Measures fluorescence lifetime with good S/N ratio with short integration time
 The streak sweep can be synchronized with Mode lock laser in sweep range of 75 MHz to 165 MHz. Through integration of this high-speed repetitive sweep, measurement with a high S/N ratio can be carried out quickly.

- Covers fluorescence phenomena from picoseconds to milliseconds
 Because the sweep time can be varied from 100 ps to 1 ms, a wide range of fluorescence lifetime measurements from picoseconds to milliseconds is possible. For higher temporal resolution, an universal streak camera is optional selection.

- Covers a wide wavelength range from UV to NIR
 The streak cameras are available, with sensitive regions of 115 nm to 850 nm, 200 nm to 850 nm, 200 nm to 900 nm, 280 nm to 920 nm and 300 nm to 1600 nm.

- High-precision measurement due to a temperature controlled picosecond laser diode
 As an excitation light source, picosecond laser diodes are available. Of course, other types of lasers can also be used.

- Standard optical system allows easy optical alignment
Flexible system configuration supports various types of fluorescence phenomena

System configuration

Example when used with Mode-locked Ti-sapphire laser

- ORCA®-spark Digital CMOS camera C11440-36U
- Power supply
- Data analyzer C6760-71
- Delay unit C15936
- Synchronous delay generator C10647-01
- Pin photo diode head C15146-01
- ND filter set for streak camera A7664
- Universal streak camera C10910-01
- Slow single sweep unit for C10910 M10913-11
- Output optics A11695-21
- ORCA®-spark Digital CMOS camera C11440-36U
- Spectrograph mount table A11350-84
- Input optics A1976-01
- Sample holder for Organic chemistry sample A8114
- Spectrograph mount table A11350-84
- Standard optics A8110-03
- Standard optics for UV A8110-04
- PLP-10 Laser diode head
- PLP-10 controller
- PLP-10 Laser diode head

Example when used with Mode-locked Ti-sapphire + Regenerative Amplifier laser

- ORCA®-spark Digital CMOS camera C11440-36U
- Power supply
- Data analyzer C6760-71
- Delay unit C15936
- Synchronous delay generator C10647-01
- Pin photo diode head C15146-01
- ND filter set for streak camera A7664
- Regenerative Amplifier laser
- Slow single sweep unit for C10910 M10913-11
- Output optics A11695-21
- ORCA®-spark Digital CMOS camera C11440-36U
- Spectrograph mount table A11350-84
- Sample holder for Organic chemistry sample A8114
- Spectrograph mount table A11350-84
- Standard optics A8110-03
- Standard optics for UV A8110-04
- PLP-10 Laser diode head
- PLP-10 controller
- PLP-10 Laser diode head

Example when used with PLP-10 Laser diode head

- ORCA®-spark Digital CMOS camera C11440-36U
- Power supply
- Data analyzer C6760-71
- Delay unit C15936
- Synchronous delay generator C10647-01
- PLP-10 Laser diode head
- PLP-10 controller
- PLP-10 Laser diode head
- Slow single sweep unit for C10910 M10913-11
- Output optics A11695-21
- ORCA®-spark Digital CMOS camera C11440-36U
- Spectrograph mount table A11350-84
- Sample holder for Organic chemistry sample A8114
- Spectrograph mount table A11350-84
- Standard optics A8110-03
- Standard optics for UV A8110-04
Fluorescence lifetime measurement software with enhanced functions

Measurement screen

- Controls a streak camera, a spectrograph and a delay generator from a PC.

 The streak camera, spectrograph and delay generator control windows are displayed on the PC monitor, which make it easy to change measurement parameters such as time scales and monitor wavelength selection. The "Auto delay" function eliminates the need to adjust the timing for each time scale even when the scale was changed.

- Real-time display of time profiles and spectrum

 Time profiles or spectrum are displayed on the monitor screen in real-time. This is a useful function for selecting the time scale during measurement or determining the analysis data range.

Lifetime analysis

- Multi-component analysis

- Multiple data analysis on the same screen

 Calculated fluorescence lifetime values are also displayed on the same screen for easy comparison analysis.

- Highly accurate analysis by deconvolution

 Deconvolution processing enables fluorescence lifetime analysis with high accuracy. When analyzing longer lifetime components such as phosphorescence, the "Tail Fit" function can be used instead of deconvolution processing.

Profile analysis

- Time-resolved spectrum display

 Allows time-resolved spectrum display the greatest feature offered by streak camera systems.

- Spectrum and fluorescence decay curve display

 Displays the full width at half maximum (FWHM), peak position and peak intensity for each profile.

- Multiple data loading and comparison on the same screen.

 Normalized processing makes multiple data comparison easy.
The streak camera enables time-resolved photon counting at multiple wavelengths in a single measurement.

1. Principle of streak method
This section explains the principle and features of fluorescence lifetime measurements using the streak camera. (In the following description, this method is simply called the "streak method").

The heart of the streak camera is an electron tube called the "streak tube". Figure 1 shows the operating principle of a streak tube. When fluorescence pulses enter the photocathode, they are converted into photoelectrons in proportion to the number of incident photons. Being accelerated by the accelerating electrode, these photoelectrons pass through a pair of deflection plates. At the instant they pass through the deflection plates, a high-speed sweep voltage is applied to the deflection plates so that the photoelectrons' trajectories are swept from top to bottom.

The swept photoelectrons are then multiplied in the microchannel plate (MCP) by a factor of 10^4, and reconverted into an optical image by the phosphor screen. The optical image produced on the phosphor screen is called the "streak image". In this way, time is converted into the spatial axis (vertical axis): thus, the time in which the photons reached the photocathode and the intensity can be determined by the position and luminance of the streak image. In addition, because the position information in the horizontal direction on the photocathode is contained in the horizontal direction of the streak image, if a spectrograph is used to focus a spectrum onto the photocathode, a streak image can be obtained in which the vertical axis serves as the time axis and the horizontal axis as the wavelength axis, and in which the luminance is proportional to the intensity on the phosphor screen.

The streak images thus obtained are read out by a CMOS camera coupled to the streak tube. To perform data measurement with a high S/N ratio, the read-out streak images are integrated in a memory of computer. In this case, there are two methods of integration: 1) the analog integration method, in which the output signal from the CMOS camera is directly integrated to create an image, and 2) the photon counting method, in which the signal is separated from noise by setting a threshold level, and only the signal is integrated. (See Section 2.) By using these two methods properly, a wide variety of fluorescent intensity can be measured, ranging from extremely weak fluorescence, for example, in cases where only one photon is detected as a result of hundreds of excitations, to bright fluorescence which is visible to the human eye.

The above figure shows the principle how intensity profiles are extracted from a time-resolved spectrum image. After the full spectrum has been recorded, the fluorescence decay curves can be extracted at arbitrary wavelength bands by just placing vertical sampling windows at the desired positions. Alternatively, by using horizontal windows, it would also be possible to extract spectral profiles at various time positions and "gate" lengths.

2. Principle of photon counting method using streak camera
The photoelectrons emitted from the photocathode of the streak tube are multiplied by the MCP with a high gain. One photoelectron can be observed as one light spot produced on the phosphor screen. This photoelectron image is read out by a CMOS camera, and then undergoes digitization. Because the noise level of the CMOS camera is exceptionally low, the photoelectron image can be clearly separated from the noise by setting a threshold level. Figure 2 shows this threshold level setting.

With the threshold set at an appropriate level, detecting the position of the photoelectron image and integrating it in the memory allow data measurement with a high S/N ratio, wide dynamic range. Moreover, this photon counting method is carried out over the entire surface of the 2 dimensional streak image, enabling photon counting measurement to be made at simultaneous multiple wavelengths. Also, even if multiple photoelectrons are produced by one excitation, they can be counted. Consequently, in the case of time-resolved spectrophotometry, the streak method offers high-sensitivity measurement which is two orders of magnitude higher than the conventional time-correlated single photon counting method requiring a wavelength scan in a spectrograph for wavelength isolation.
In addition to high temporal resolution, the universal streak camera features high sensitivity and a wide dynamic range. In photon counting integration, a major factor that determines the detection limit of the light level is the dark current (noise) of the photocathode. The photocathode dark current of the C10910 is smaller than that of the photomultiplier tube used in the conventional time-correlated single photon counting method by 3 orders of magnitude: thus, the streak method offers a high S/N ratio in measuring even very low fluorescence. Also, low dark current assures a low noise level, thereby easily achieving a wide dynamic range better than 100,000:1. This enables multi-component fluorescence lifetime analysis to be made with high accuracy. On the other hand, in cases where fluorescence intensity is so high that it may saturate in the photon counting method, the C10910 can be switched from the photon counting integration mode to the analog integration mode, making possible highly efficient measurement without reducing the signal light level. Consequently, the C10910 is the most ideal device currently available in optical measurements.

3. Functions of the streak camera

The streak method offers the following features:

- **High temporal resolution**
- **Wide dynamic range and high S/N ratio due to photon counting integration**
- **Simultaneous multiple-wavelength measurement for fluorescence lifetime analysis and time-resolved spectrophotometry**

[High temporal resolution]

Conventional time-correlated single photon counting methods using a photomultiplier tube have proven inadequate in fluorescence lifetime measurement and rise-time analysis in the order of subnanoseconds, because temporal resolution is limited to about 1 ns and the signal waveform may be distorted by the TTS (photoelectron transit time spread) of the photomultiplier. The universal streak camera C10910 used with the streak method has a superior temporal resolution of better than 1 ps, and furthermore, it is free of waveform distortion. (Figure 3 shows the device function of the universal streak camera C10910.) As seen from the device function, the streak method is capable of fluorescence lifetime measurement and rise-time analysis from several picoseconds to nanoseconds with high accuracy, both of which have been difficult with conventional methods. The streak sweep time is switchable between 100 ps and 1 ms full scale, allowing a wide range of fluorescence analysis from picoseconds to milliseconds.

![Figure 3: Device function of the universal streak camera C10910](image)

[Wide dynamic range and S/N ratio due to photon counting]

In addition to high temporal resolution, the universal streak camera features high sensitivity and a wide dynamic range. In photon counting integration, a major factor that determines the detection limit of the light level is the dark current (noise) of the photocathode. The photocathode dark current of the C10910 is smaller than that of the photomultiplier tube used in the conventional time-correlated single photon counting method by 3 orders of magnitude: thus, the streak method offers a high S/N ratio in measuring even very low fluorescence. Also, low dark current assures a low noise level, thereby easily achieving a wide dynamic range better than 100,000:1. This enables multi-component fluorescence lifetime analysis to be made with high accuracy. On the other hand, in cases where fluorescence intensity is so high that it may saturate in the photon counting method, the C10910 can be switched from the photon counting integration mode to the analog integration mode, making possible highly efficient measurement without reducing the signal light level. Consequently, the C10910 is the most ideal device currently available in optical measurements.

[Simultaneous multiple-wavelength measurement]

As explained in the section on “Principle of streak method”, the combination of the C10910 with a spectrograph enables simultaneous multiple wavelength measurement to be made. In conventional time-correlated single photon counting, because simultaneous multiple-wavelength measurement is not possible, the wavelength range to be observed must be scanned for time-resolved spectrophotometry and multiple-wavelength fluorescence lifetime analysis. These measurements sometimes require several hours. As the universal streak camera C10910 is capable of simultaneous multiple-wavelength measurement without doing the wavelength scan in the spectrograph, it greatly reduces the time needed to obtain a time-resolved spectrum. In particular, this will prove dramatically effective when fluorescence is very low.

![Figure 3: Device function of the universal streak camera C10910](image)

Figure 4: Colloidal quantum dots (CdSe/ZnS Core/Shell structure)

(a) Streak image of time-resolved luminescence spectra.
(b) Decay curves at different wavelength ranges.

- The lifetime of QDs at different longer wavelength (600 nm to 670 nm) is longer than that of shorter wavelength (540 nm to 600 nm). The lifetime distribution does not correspond to the photoluminescence peak distribution.

This novel material is expected to be applied for fluorescent material, LED material, single photon source, and bio-labeling. These results open the possibility to experimentally study the behavior of exciton dynamics of colloidal QDs including energy transfer between QDs.

*Data produced by Professor Yong-Hoon Cho
Nano-Bio-Photonics Laboratory, Dept. of Physics,
Korea Advanced Institute of Science and Technology (KAIST), Korea*
The optimum system can be tailored to your samples by selecting the excitation light source, optics, spectrograph, etc.

Configuration and specifications

1. **Excitation light source**
 - PLP-10
 - YAG laser
 - Other lasers

2. **Standard optical systems**
 - Solution and film measurement optical system
 - Single fiber optics
 - Sample holder
 - ND filter set

3. **Spectrograph**
 - Spectrograph
 - Spectrograph mount table

4. **Detector + Input optics + Output optics + Readout camera**
 - Input optics
 - Universal streak camera
 - Output optics
 - ORCA®-Flash4.0 V3 Digital CMOS camera
 - ORCA®-spark Digital CMOS camera
 - Mount table

5. **Data analyzer**
 - Data analyzer

6. **Peripheral equipment**
 - Synchronous delay generator
 - Pin diode head
 - Delay unit
 - Digital delay generator

The optimum system can be tailored to your samples by selecting the excitation light source, optics, spectrograph, etc.
The PLP-10 is a picosecond light pulser using a temperature controlled laser diode. It is virtually maintenance-free and generates stable picosecond pulsed light over a long period of time.

1 Excitation light source
To excite a specimen, various pulsed light sources are provided.

- **PLP-10 Laser diode head M10306**
The PLP-10 is a picosecond light pulser using a temperature controlled laser diode. It is virtually maintenance-free and generates stable picosecond pulsed light over a long period of time.

<table>
<thead>
<tr>
<th>Type</th>
<th>Laser diode (temperature-controlled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser wavelength*</td>
<td>375 nm, 405 nm, 445 nm, 465 nm, 483 nm, 510 nm, 655 nm, 785 nm, 850 nm</td>
</tr>
<tr>
<td>Output pulse width</td>
<td>50 ps to 130 ps</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>max. 100 MHz</td>
</tr>
<tr>
<td>Peak power (typ.)</td>
<td>50 mW to 600 mW (It depends on each laser head.)</td>
</tr>
</tbody>
</table>

* Select one wavelength from among these wavelengths.

2 Other excitation light sources
Besides the PLP-10 above, various types of excitation light sources can be used according to the specimens to be measured. These include a nitrogen-laser-pumped dye laser, semiconductor-laser-pumped Q-switched YAG laser, and mode-locked laser.

3 Standard optical systems
Various optical systems are available for solution and solid state specimens. Select from the list below the optical system that best matches the specimen of interest. Fiber optics and excitation light guide adapters for microscopes are also available. Please consult Hamamatsu should the specimen of interest require temperature control.

<table>
<thead>
<tr>
<th>Type number</th>
<th>Product name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8110-03</td>
<td>Standard optics</td>
</tr>
<tr>
<td>A8110-04</td>
<td>Standard optics for UV</td>
</tr>
<tr>
<td>A8112-02</td>
<td>Sample holder for Optistat DN cryostat</td>
</tr>
<tr>
<td>A8114</td>
<td>Sample holder for Organic chemistry sample</td>
</tr>
<tr>
<td>A7684</td>
<td>ND filter set for streak camera</td>
</tr>
<tr>
<td>A5760-02</td>
<td>Single fiber optics with 3m fiber</td>
</tr>
</tbody>
</table>

 Aside the above optical systems, we also design custom optical systems ideal for the specimens of interest. Your own optical systems can also be used.

4 Spectrograph

Spectrograph f=300 mm C11119-04
The C11119-04 is a Czerny-Turner type spectrograph with a focal length of 300 mm and an aperture of F/3.9. Due to the aberration-corrected optics, it is highly efficient in focusing light to the streak camera detector, enabling high-sensitivity measurements. More than twenty optional gratings are available for the C11119-04, and up to three gratings can be installed at one time. Grating and wavelength selection is controlled by the integrated streak camera software, in addition to the entrance slit width, for fine control of incident light.

<table>
<thead>
<tr>
<th>Optical layout</th>
<th>Czerny-Turner type (with aberration-corrected toroidal mirror)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal distance</td>
<td>300 mm</td>
</tr>
<tr>
<td>F value</td>
<td>3.9</td>
</tr>
<tr>
<td>Incident light slit width</td>
<td>Variable between 10 μm to 3 mm</td>
</tr>
<tr>
<td>Grating</td>
<td>3 (Additional turret/grating available)</td>
</tr>
</tbody>
</table>

Spectrograph mount table A11350-84
The A11350-84 is a mount table for coupling the universal streak camera C10910 and the spectrograph f=300 mm C11119-04.

Spectrograph mount table A11350-84

Optical layout

- Czerny-Turner type (with aberration-corrected toroidal mirror)
- Focal distance: 300 mm
- F value: 3.9
- Incident light slit width: Variable between 10 μm to 3 mm
- Grating: 3 (Additional turret/grating available)

Standard optics

- A8110-03: Standard optics
- A8110-04: Standard optics for UV
- A8112-02: Sample holder for Optistat DN cryostat
- A8114: Sample holder for Organic chemistry sample
- A7684: ND filter set for streak camera
- A5760-02: Single fiber optics with 3m fiber

Aside the above optical systems, we also design custom optical systems ideal for the specimens of interest. Your own optical systems can also be used.

Spectrograph mount table A11350-84
The A11350-84 is a mount table for coupling the universal streak camera C10910 and the spectrograph f=300 mm C11119-04.

Spectrograph mount table A11350-84

Standard optics A8110 and Sample holder for Organic chemistry sample A8114
Detector, Input optics, Output optics, Readout camera

The heart of the C11200 system is an ultrafast optical detector - the universal streak camera C10910. It can capture very weak luminescence phenomena, from picoseconds to milliseconds, achieving very high signal-to-noise ratio within short measuring times due its high repetition rates of up to 165 MHz. The spatial axis of the C10910 allows multichannel spectral measurement, making it the ideal detector for time-resolved spectroscopy. The system is completely remote-controlled from the data analyzer.

Universal streak camera C10910

Spectral response
- C10910-01: 200 nm to 850 nm
- C10910-02: 300 nm to 1600 nm
- C10910-03: 115 nm to 850 nm
- C10910-04: 280 nm to 920 nm
- C10910-05: 200 nm to 900 nm

Temporal resolution
- < 1 ps FWHM (fastest sweep range)
- < 20 ps FWHM (fastest sweep range)

Maximum repetition frequency
- 165 MHz (with Synchroscan unit)
- 4 MHz (fastest sweep range)

Sweep time
- 80 ps, 200 ps, 600 ps, 1200 ps, 2083 ps (with Synchroscan unit : 80 MHz)
- 1.2 ns, 2 ns, 5 ns, 10 ns, 20 ns, 50 ns, 100 ns, 200 ns, 500 ns, 1 μs, 2 μs, 5 μs, 10 μs, 20 μs, 50 μs, 100 μs, 200 μs, 500 μs, 1 ms

*At the center of window at 800 nm wavelength. The figure does not include phase noise of the light source or temporal broadening by a spectrograph. However, when C10910-04 (photocathode S-25) is used for the streak camera body, the temporal resolution is 4 ps FWHM or less.

Input optics A1976-01

- **Spectral transmission**: 200 nm to 1600 nm
- **Effective F value**: 5.0
- **Silt width**: 0 mm to 5 mm
- **Silt width reading precision**: 5 μm
- **Overall length** (excluding the fitting part): 98.2 mm

Output optics A11695-21

- **Magnification**: 1 : 0.7 (50 mm : 35 m)
- **Surge**: 2.0

ORCA®-Flash4.0 V3 Digital CMOS camera C13440-20CU

Standard readout camera for streak camera applications with extremely low readout noise and high frame rate.

- **Effective number of pixels**: 2048 (H) × 2048 (V)
- **Pixel size**: 6.5 μm (H) × 6.5 μm (V)
- **Effective area**: 13.312 mm (H) × 13.312 mm (V)
- **Number of pixels on working area**: 1280 (H) × 968 (V)
- **Working area on phosphor screen**: 12.48 mm (H) × 9.44 mm (V)
- **Exposure time** (Standard scan internal trigger mode with full resolution): 1 ms to 10 s
- **Frame rate** (Full resolution, Camera Link): 100 frames/s
- **Digital output**: 16 bit
- **Power supply**: AC 100 V to AC 240 V, 50 Hz/60 Hz
- **Power consumption**: Approx. 120 VA

ORCA®-spark Digital CMOS camera C11440-36U

Low cost model of readout camera. Balanced performance at readout noise and frame rate.

- **Effective number of pixels**: 1920 (H) × 1200 (V)
- **Pixel size**: 5.86 μm (H) × 5.86 μm (V)
- **Effective area**: 11.25 mm (H) × 7.03 mm (V)
- **Number of pixels on working area**: 1408 (H) × 1072 (V)
- **Working area on phosphor screen**: 12.39 mm (H) × 9.44 mm (V)
- **Exposure time** (Standard scan internal trigger mode with full resolution): 26.17 μs to 10 s
- **Frame rate** (Full resolution, Camera Link): 64.9 frames/s
- **Digital output**: 12 bit
- **Power supply**: DC +12 V
- **Power consumption**: Approx. 20 VA

Mount table A11771

The A11771 is a mount table for coupling a readout camera for streak camera.

- **A11771-03** For C10910 + ORCA®-Flash4.0 V3
- **A11771-04** For C10910 + ORCA®-spark

Spectral response of the streak tube (typ.)

Estimated values below 200 nm
Data analyzer C6760-60, -61, -70, -71

The dedicated software controls the streak camera, spectrograph and peripheral units to perform fluorescence lifetime analysis. The software runs under Windows®. Fitting analysis enables 5 component analysis.

<table>
<thead>
<tr>
<th>Control functions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>● Universal Streak camera C10910</td>
<td>Time axis setting</td>
</tr>
<tr>
<td></td>
<td>Gain setting</td>
</tr>
<tr>
<td></td>
<td>Shutter control</td>
</tr>
<tr>
<td>● Spectrograph f=300 mm C11119-04</td>
<td>Center wavelength setting</td>
</tr>
<tr>
<td></td>
<td>Grating selection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data acquisition functions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon-counting integration</td>
<td></td>
</tr>
<tr>
<td>(Peak Detection, Center of gravity)</td>
<td></td>
</tr>
<tr>
<td>Analog integration</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correction and calibration functions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time axis calibration (Calibrated prior to shipment)</td>
<td></td>
</tr>
<tr>
<td>Wavelength calibration (Requires optional light source for calibration)</td>
<td></td>
</tr>
<tr>
<td>Dark current correction</td>
<td></td>
</tr>
<tr>
<td>Shading correction (Requires optional light source for calibration)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data analysis functions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 component exponential function analysis by fitting</td>
<td></td>
</tr>
<tr>
<td>Profile analysis (wavelength axis, time axis)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CameraLink (C6760-60, -70)</td>
<td></td>
</tr>
<tr>
<td>USB 3.0 (C6760-61, -71)</td>
<td></td>
</tr>
</tbody>
</table>

Delay unit C15936

The C15936 is a passive delay unit, with zero jitter, used for fine tuning the trigger delay times to match the selected streak time.

<table>
<thead>
<tr>
<th>Variable delay range</th>
<th>0 ns to 31.96 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay setting range</td>
<td>30 ps, 60 ps, 120 ps, 250 ps, 500 ps, 1 ns, 2 ns, 4 ns, 8 ns, 16 ns</td>
</tr>
<tr>
<td>Interface</td>
<td>USB 3.0</td>
</tr>
</tbody>
</table>

Digital delay generator DG645 C13430-02

This is a general-purpose delay generator that matches the streak camera timing with the pulsed laser timing, mainly for slower streak times.

<table>
<thead>
<tr>
<th>Number of output channels</th>
<th>4 ch (AB, CD, EF, GH output terminal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output level</td>
<td>0.5 V to 5.0 V 50 Ω</td>
</tr>
<tr>
<td>Variable delay range</td>
<td>0 ps to 2000 s</td>
</tr>
<tr>
<td>Delay resolution</td>
<td>5 ps</td>
</tr>
<tr>
<td>Internal delay time</td>
<td>85 ns</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>Single to 10 MHz</td>
</tr>
<tr>
<td>Jitter</td>
<td>< 25 ps rms</td>
</tr>
<tr>
<td>Interface</td>
<td>GPIB / RS-232C</td>
</tr>
</tbody>
</table>

Peripheral equipment

Synchronous delay generator C10647-01

When using a Ti-Sapphire laser in conjunction with a pulse picker, this unit generates low-jitter trigger signals synchronized with the laser repetition rate. Also, it is generated for to adjust performance timing of PLP-10 and streak camera.

Internal mode

EXTERNAL mode, DUMP mode

Input signal, Output signal

<table>
<thead>
<tr>
<th>Mode-lock IN</th>
<th></th>
<th>TRIG.IN</th>
<th></th>
<th>OUTPUT A</th>
<th></th>
<th>OUTPUT B, C, D</th>
<th></th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode-lock IN</td>
<td>input signal frequency</td>
<td>10 MHz to 200 MHz</td>
<td>input signal level</td>
<td>0 dBm to 15 dBm</td>
<td>Impedance</td>
<td>50 Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIG.IN</td>
<td>input signal frequency</td>
<td>0 Hz to 16 MHz</td>
<td>input signal level</td>
<td>+0.25 V to +3.3 V</td>
<td>Impedance</td>
<td>50 Ω</td>
<td>High Z (10 kΩ)</td>
<td></td>
</tr>
<tr>
<td>OUTPUT A</td>
<td>Output signal level</td>
<td>2 V</td>
<td></td>
<td>Impedance</td>
<td>50 Ω</td>
<td></td>
<td></td>
<td>Output signal level</td>
</tr>
<tr>
<td>OUTPUT B, C, D</td>
<td>Output signal level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pin photo diode head C15146-01

The C15146-01 generates a low-jitter trigger signal when coupled with various lasers including passive mode-locked lasers. A specially designed circuit produces a highly stable trigger signal compatible with the universal streak camera C10910.

Optical input signal frequency	74 MHz to 100 MHz
Recommended optical input level	Around 2.0 mW (averaging power)
Typical output signal level	About 2.0 V (peak to peak) (typ.)
(50 Ω, optical input level 2.0 mW)	
Universal streak camera C10910
+ Input optics + Output optics + Fast single sweep unit M10912-01
+ Horizontal blanking unit M10914-01
+ Readout camera ORCA®-Flash4.0 V3

Digital CMOS camera C13440-20CU (Approx. 30.4 kg)

ORCA is registered trademark of Hamamatsu Photonics K.K. (China, France, Germany, Japan, U.K., U.S.A.)
Windows is registered trademark of Microsoft Corporation in the U.S.A.
Product and software package names noted in this documentation are trademarks or registered trademarks of their respective manufacturers.
Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult your local sales representative.
Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions.
Specifications and external appearance are subject to change without notice.
© 2021 Hamamatsu Photonics K.K.

HAMAMATSU PHOTONICS K.K. www.hamamatsu.com

Systems Division
812 Joko-cho, Higashi-ku, Hamamatsu City, 431-3196, Japan, Telephone: (81)53-431-0124, Fax: (81)53-433-8031, E-mail: export@sys.hpk.co.jp
U.S.A.: Hamamatsu Corporation: 360 Foothill Road, Bridgewater, NJ 08807, U.S.A., Telephone: (1)908-231-0660, Fax: (1)908-231-1218 E-mail: usa@hamamatsu.com
Germany: Hamamatsu Photonics Deutschland GmbH: Arztbergstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8 E-mail: info@hamamatsu.de
France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: info@hamamatsu.fr
United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, Theale Road, Wokingham Garden City, Berkshire RG8 1BW, UK, Telephone: (44)11707-29488, Fax: (44)11707-32777 E-mail: info@hamamatsu.co.uk
North Europe: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01 E-mail: info@hamamatsu.se
Italy: Hamamatsu Photonics Italia S.r.l.: Strada della Moia, 1 int. 8, 20044 Arona (Milano), Italy, Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41 E-mail: info@hamamatsu.it
China: Hamamatsu Photonics (China) Co., Ltd.: 1201 Tower B, Jianming Center, 27 Donganhai Ren, Chaoyang District, 100020 Beijing, P.R. China, Telephone: (86)10-6586-6004, Fax: (86)10-6586-2866 E-mail: hpc@hamamatsu.com.cn
Taiwan: Hamamatsu Photonics Taiwan Co., Ltd.: 8F-3, No.158, Section 2, Gongduo 5th Road, East District, Hsinchu, 300, Taiwan R.O.C. Telephone: (886)3-659-0660, Fax: (886)3-659-0681 E-mail: info@hamamatsu.com.tw

Cat. No. SHSS00008E09
AUG/2021 HPK
Created in Japan