SiPM and SPAD:

Emerging Applications for Single-Photon Detection

Slawomir S. Piatek, Ph.D. Senior University Lecturer of Physics New Jersey Institute of Technology

SiPM and SPAD: emerging applications

Slawomir Piatek NJIT/Hamamatsu Copyright 2019 Hamamatsu

Outline

- Introduction to PN junction devices
- Fundamentals of single-photon avalanche photodiode (SPAD)
- Fundamentals of silicon photomultiplier (SiPM)
- Key opto-electronic characteristics of SiPMs
- Applications of SiPMs and SPADs
- Summary and conclusions

Introduction to PN junction devices

Terminology

PD – Photodiode

APD – Avalanche photodiode

 SPAD – Single-photon avalanche photodiode
 The same

 SPPC – Single-pixel photon counter; another name for SPAD
 The same

 SiPM – Silicon photomultiplier
 The same

 MPPC – Multi-pixel photon counter; another name for SiPM
 The same

PMT – Photomultiplier tube

Generic PN junction: modes of operation

PD, APD, and SPAD

Single-photon avalanche photodiode (SPAD)

n++

n++ shallow

Structure of a SPAD

Anode Cathode sriker p+ depletion toter p++ buried layer Oxide

20-75 µm

hv

Structure of a *thick* SPAD

Structure of a *thin* SPAD. This structure is used in SPAD arrays.

Figures from Zappa et al. 2007

SiPM and SPAD

Operation of a SPAD

Without quenching, SPAD operates as a light switch.

Operation of a SPAD (passive quenching)

Operation of SPAD (passive quenching)

Silicon photomultiplier (SiPM)

Silicon photomultiplier: structure

Single microcell

Each microcell is a SPAD in series with a quench resistor. All microcells are connected in parallel. SiPM is <u>not</u> an imaging device because all microcells share a common current summing node.

Silicon photomultiplier: operation

Overvoltage,
$$\Delta V = V_{BIAS} - V_{BD}$$

Example of single-photoelectron waveform (1 p.e.)

Gain = area under the curve in electrons

Silicon photomultiplier: modes of operation

If the pulses are distinguishable, SiPM can be operated in a **photon counting** mode.

If the pulses overlap, the SiPM can be operated in an **analog mode**. The measured output is voltage or current.

Key opto-electronic characteristics of SiPMs

Structural and geometrical considerations

Packaging

Ceramic

Surface mount

Metal, TE-cooled

Array of SiPMs

Gain

Gain depends linearly on overvoltage. For a given overvoltage, gain depends on the μ -cell size.

Photon detection efficiency (PDE)

Probability that the incident photon is detected. PDE is a function of wavelength and overvoltage. For a given overvoltage, PDE depends on the μ -cell area.

Dark current and dark count rate

Recommended overvoltage: 7 V Gain (μ) = 1.1 × 10⁶ $I_D = 10^{-7} A$ DCR = $I_D/(\mu e) \approx 570,000 \text{ cps}$ DCR/ μ -cell = 213 cps

Crosstalk

Crosstalk probability

Crosstalk probability depends on overvoltage and microcell size (gain).

Linearity and dynamic range

 10^{-8} W implies 3.7×10^{-12} W per μ -cell

which is $\sim 16 \times 10^6$ photons per second per μ -cell

which is ~ 1 photon per 63 ns

For a given active area, the number of μ -cells determines the upper limit of the dynamic range.

Tradeoffs

Fixed: active area & overvoltage; change µ-cell size

Tradeoffs

Fixed: active area & μ -cell size; change overvoltage

Applications

- Dark matter detection
- Flow cytometry
- Bio- and chemiluminescence
- Time-of-flight LiDAR
- Flash LiDAR

Photodetector comparison

	PMT	APD	SiPM
Quantum efficien	cy Up to ~40%	Up to ~85%	Up to ~50%
Gain	10 ⁵ - 10 ⁷	Up to ~100	10 ⁵ - 10 ⁶
Excess noise	~1.2	3 - 4	~1.1 - 1.2
Minimum detectal power	ble Best	Good	Better
Dynamic range	Dependent on the voltage divider	Largest (high saturation level)	Dependent on the number of microcells
Temperature effects	Weak	Strong	Strong

Additional attributes of SiPMs

- Operation immune to electric and magnetic fields
- Low bias voltage (10s of volts)
- No damage or lasting effects when exposed to full light
- Simple biasing circuit
- Ability to make arrays and to mount on a circuit board
- Ruggedness

Background

- A galactic mass deduced from stellar kinematics is much larger than that implied by its luminous matter. The difference is known as *dark matter*.
- Dark matter interacts gravitationally but emits little or no light.
- The nature of dark matter is still not known.
- Among a number of possibilities, dark matter could be in the form of particles that can interact with "ordinary" matter.
- Active research exists in identifying the nature of dark matter.

Detection concept for WIMPs

Legend:

- Dark matter particle (WIMP)
- 175-nm light from liquid Xenon scintillation
- Electron
- → Light from ionized Xenon gas

Characteristics of received light

- Two pulses of light: S_1 contains ~few tens of photons, while S_2 ~few thousand
- Wavelength: UV and V
- Pulse duration: ~ns for S_1 and ~ μ s for S_2

Photodetector requirements

- Photosensitivity in UV and V range
- High intrinsic gain (suppresses importance of electronic noise)
- High bandwidth (to avoid distortion of S_1 pulse)
- Able to operate at low temperature (- 95 ° C or 178 K)

HAMAMATS

Product recommendation for liquid Xenon detection

VUV3 and VUV4

Array: Four $5.95 \times 5.85 \text{ mm}^2 \text{ SiPMs}$

Each SiPM has 13,923 µ-cells, 50 µm pitch

Fill factor: 60%

Effect of temperature on the gain

- Breakdown voltage decreases with decreasing temperature.
- Gain depends on V_{BIAS} V_{BD}
- If $V_{BIAS} V_{BD}$ is held constant, the gain is constant too.

Flow cytometry

Flow cytometry: study of cells and micro-particles

- Used in medicine, biology, and engineering to study and sort cells and micro-particles
- Cells scatter interrogation light. The manner of scatter depends on the cell properties.
- The rate of interrogation is on the order of 1,000 cells per second or more.

Flow cytometer: what is measured?

The front-end electronics can be set up to measure the peak value of the pulse, its FWHM, and/or area under the curve. These different measurements provide specific information about the cell.

Characteristics of received light

- Wavelength: can be selected depending on cell sizes and fluorescence
- Pulses: duration dependent on the sheath flow speed and cell size and is on the order of μ s
- Number of photons per pulse varies from a few to thousands
- Rate of pulses is in kHz

How stable are the photodetector's characteristics such as gain?

Does the photodetector and detection electronics have enough bandwidth?

Product recommendation for flow cytometry

Hamamatsu S14420 SiPM (MPPC) series

Structure / Absolute maximum ratings

Type no.	Pixel pitch	Photosensitive area (mm)	Number of pixels	Fill factor	Package	Window material	Window refractive index
S14420-1525MG	25	11 5	2876	63	Metal (TO-5)	Borosilicate glass	1.49
S14420-1550MG	50	φ1.5	724	81			
S14420-3025MG	25	12.0	11344	63			
S14420-3050MG	50	φ3.0	2836	81		100.0	

Electrical and optical characteristics

	Spectral	Peak	Photon detection	Dark count		Terminal		Brookdown	an anna	Recommended	Temperature coefficient
Type no.	response range λ (nm)	sensitivity wavelength λp (nm)	efficiency* ³ PDE λ=λp (%)	Typ. (kcps)	Max. (kcps)	capacitance Ct (pF)	Gain M	voltage VBR (V)	Crosstalk probability (%)	operating voltage*4 Vop (V)	of recommended operating voltage ∆TVop (mV/°C)
S14420-1525MG			30	380	1000	90	0.9×10^{6}		1.5	VBR + 5	47
S14420-1550MG	250 10 1000	600	40				3.6×10^{6}	42 ± 5	5		
S14420-3025MG	350 to 1000	600	30	1000	4000	250	0.9×10^{6}		1.5		
S14420-3050MG			40	4000	350	3.6×10^{6}		5			

1/17/2019

HAMAMATSU

Basic concept of a luminometer

ATP – adenosine triphosphate

Characteristics of the received light

1. Wavelength in the 500 nm - 550 nm range

2. Diffuse (diffuse light cannot be focused)

3. Weak and slowly varying

1. Large active area

Signal ~ A Noise ~ \sqrt{A} so S/N ~ \sqrt{A}

2. Photosensitivity in 500 - 550 nm range

3. Gain

- 4. Low dark current
- 5. Small detection bandwidth (limited by the amplifier)

Product recommendation for luminescence

Hamamatsu S14420 SiPM (MPPC) series

Structure / Absolute maximum ratings

	Pixel pitch	Photosensitive area (mm)	Number of pixels	Fill factor		Window material	Window refractive index	Absolute maximum ratings			
Type no.					Package			Operating temperature*1 Topr (°C)	Storage temperature*1 Tstg (°C)	Soldering conditions*2	
S14420-1525MG	25	11 5	2876	63						Peak	
S14420-1550MG	50	φ1.5	724	81	Metal	Borosilicate	1.49	-40 to +85	-40 to +105	temperature: 350 °C, once, 3 s max.	
S14420-3025MG	25	42.0	11344	63	(TO-5)	glass					
S14420-3050MG	50	φ3.0	2836	81							

Electrical and optical characteristics

	Spectral response range λ (nm)	Peak sensitivity wavelength λp (nm)	Photon detection efficiency ⁴³ PDE $\lambda = \lambda p$ (%)	Dark count		Terminal		Broakdown	The second second second	Recommended	Temperature coefficient
Type no.				Typ. (kcps)	Max. (kcps)	capacitance Ct (pF)	Gain M	voltage VBR (V)	Crosstalk probability (%)	operating voltage* ⁴ Vop (V)	of recommended operating voltage ΔTVop (mV/°C)
S14420-1525MG			30 200	1000	00	0.9×10^{6}		1.5			
S14420-1550MG	250 10 1000	50 to 1000 600	40	380 100	1000	1000 90	3.6×10^{6}	42.1.5	5	Ver i F	47
S14420-3025MG	350 to 1000		30	1600 4000	250	0.9×10^{6}	42 ± 5	1.5	VBR + 5	4/	
S14420-3050MG			40		4000	350	3.6×10^{6}		5		

Radiation monitoring

Radiation monitoring basic concept

Detection of radiation such as α , β , γ , and others. Applications in, for example, environmental monitoring, radiation safety, or security.

Characteristics of received light

- Pulses
- Number of photons per pulse depends on energy of the ionizing radiation and type of scintillator
- Duration of the pulse depends on the size and type of the scintillator (decay time constants range from ns to µs)
- Frequency of pulses depends on the rate of incoming radiation

- High intrinsic gain
- High photon detection efficiency
- Large active area
- Ability to couple to a scintillator
- Suitable for portable hand-held devices

Product recommendation for radiation detection

Structure

S14160 series

Parameters	S14160/S14161 -3050HS(-04,-08)	S14160/S14161 -4050HS(-06)	S14160/S14161 -6050HS(-04)	unit
Effective photosensitive area/channel	3.0 x 3.0	4.0 x 4.0	6.0 x 6.0	mm ²
Pixel pitch		50		μm
Number of pixels / channel	3531	6331	14331	12
Geometrical fill factor		74		%
Package		Chip on board surface mount type		7.1
Window		Silicone		-
Window refractive index		1.57		-

Electrical and optical characteristics (Typ. Ta=25 deg C, Over voltage=2.7V Unless otherwise noted)

Parameters	Symbol	S14160/S14161 -3050HS(-04,-08)	S14160/S14161 -4050HS(-06)	S14160/S14161 -6050HS(-04)	unit				
Spectral response range	λ		270 to 900	de .	nm				
peak sensitivity wavelength	λр		450						
Photon detection efficiency at λp^{*3}	PDE	50							
Break down Voltage	VBR		Тур. 38		V				
Recommended operating voltage *4	Vop		VBR + 2.7						
Vop variation Between typ.		0.05							
channels(+/-) in one array *5 max.			0.1						
Dark current typ.		0.6	1.1	2.5					
max.		1.8	3.3	7.5	Au				
Crosstalk probability	-		7		%				
Terminal capacitance	Ct	500	900	2000	pF				
Gain	м	2.5x10 ⁶							
Temperature coefficient of recommended reverse voltage	ΔΤVop	34							

1/17/2019

Time-of-flight LiDAR

Time-of-flight (ToF) automotive LiDAR

- There is a great interest in developing self-driving cars.
- Automotive LiDAR is likely needed on a self-driving car to provide high-resolution 3D imaging of its surroundings.
- Photodetection and beam-steering are two most outstanding challenges in the development of an automotive LiDAR.

Time-of-flight (ToF) LiDAR

Characteristics of the received light

Pulses

Wavelength – 905 nm or 1550 nm

Peak power – few to 100's of nW

- High quantum efficiency at 905 nm and/or 1550 nm (affects detection range)
- High detector (intrinsic) gain (reduces importance of electronic noise)
- Small excess noise (affects timing error)
- Small time jitter (affects distance error)
- High dynamic range

HAMAMATSU

Importance of dynamic range

- If fixed trigger is used, the changing background will affect timing.
- If constant fraction trigger is used, saturation will affect timing.

Product recommendation for ToF LiDAR

Hamamatsu S13720 SiPM (MPPC) series

Electrical and optical characteristics (Typ. Ta=25 °C, overvoltage=7 V, unless otherwise noted)

Parameter	Condition	Symbol	Min.	Typ.	Max.	Unit	
Spectral response range		λ		350 to 1000	-	nm	
Peak sensitivity wavelength		λр		660		nm	
Photon detection efficiency* ³ Breakdown voltage	λ=λp	DDE	5 2 3	22	9	0/-	
Photon detection emclency	λ=905 nm	PDE	-	7	17 A	%	
Breakdown voltage		VBR	52	57	62	V	
Recommended operating voltage*4		Vop	-	VBR + 7	-	V	
Dark count)	-		500	1500	kcps	
Crosstalk probability		124	121	6	-	%	
Terminal capacitance		Ct	-	65		pF	
Gain		M	2	1.1×10^{6}	2	- 1	
Temperature coefficient of reverse voltage		ΔΤVop		54		mV/°C	

1/17/2019

Flash LiDAR

The projector illuminates the scene with multiple divergent pulses of short duration (few ns).

Flash LiDAR

The returned light is imaged on an array of sensors. Each pixel measures distance to the imaged element of the scene.

Flash LiDAR

SPAD array

A histogram like the one above must be obtained for each pixel.

SPAD array by Hamamatsu is being developed. More information will be released at the Photonics West 2019 meeting.

Summary and conclusions

Summary and conclusions

- SiPMs as a family have a spectral response in the 120 nm 1000 nm range.
- SiPM has an intrinsic gain comparable to that of a PMT, and on the order of 10^6 .
- SiPMs enjoy an ever increasing adoption as the detector of choice in a wide range of applications.
- SPAD arrays open the possibility of single-photon imaging and may resolve engineering challenges in designing automotive LiDAR.

Upcoming Hamamatsu Promotional Activities:

SPIE Photonics West 2019 (San Francisco), Wednesday, February 6, 2019 (8 hours) <u>Mr. Koei Yamamoto (Director of Solid State and Laser Division from HQ Japan) is</u> <u>presenting two key topics highlighted in red:</u>

- Part 1 (8:10 AM 10:00 AM) "Introduction to Photodetectors" (Slawomir Piatek)
- <u>Part 2 (10:15 AM 11:45 AM) "Evolution of Geiger Mode APD Technologies –</u> <u>SiPM & SPAD" (Mr. Koei Yamamoto)</u>
- Part 3A (1:00 PM 2:15 PM) "Spectroscopy and Spectrometer Concepts" (Slawomir Piatek)
- Part 3B (2:15 PM 3:00 PM) "Spectroscopy and Spectrometer What's Next" (John Gilmore)
- Part 4A (3:15 PM 4:00 PM) "Automotive LiDAR: Design Concepts and Challenges" (Jake Li)
- <u>Part 4B (4:00 PM 5:00 PM) "Photonics Technology Improvements that Drive</u> <u>the Future of LiDAR Designs" (Mr. Koei Yamamoto)</u>

Thank you for listening!

For more info, see our past SiPM webinars linked below.

SiPM: Operation, performance, and possible applications https://www.youtube.com/watch?v=HHS1qYfMDfk&t=430s

Low light detection: PMT vs. SiPM https://www.youtube.com/watch?v=I5dUB6LT4T4&t=2s

Contact: Slawomir Piatek piatek@njit.edu