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Introduction

• There is a great interest in the automotive industry to develop 

on-vehicle systems which make driving safer.

• In addition, motivated by market demand, a longer-term goal is 

development of a completely autonomous (self-driving) 

vehicle.
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Introduction

• Such a self-driving vehicle must have an ability to create a 3D 

map of its surroundings up to about 300 m at a video rate.

This webinar discusses techniques and challenges of 

measuring distance with light for automotive applications 

emphasizing time-of-flight LiDAR  
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Outline

• Time of flight (Tof) LiDAR (emphasis of this webinar)

- Challenges in designing ToF LiDAR

- Basic concept

- Types of ToF LiDAR: mechanical, flash, optical phase array

• FMCW radar (concept)

• FMCW LiDAR (heterodyne optical mixing)

• Summary and conclusions
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Basic layout of ToF LiDAR

to target

emitted pulse

“start” pulse

“stop” pulse

emission optics

timer

collection optics

laser

returned pulse after Δt

beam splitter
w = cτ

“fast” photodetector
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ToF LiDAR distance

Measure Δt

R = ½cΔt

If Δt = 0.67 μs, R = 100 m   

or 6.7 ns per 1 m of distance
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Distance uncertainty

δR = ½cδΔt

δR – Distance uncertainty

δΔt – Uncertainty in measuring Δt (mostly due to photodetector jitter)

Laser spot small compared to the 

target feature
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Distance uncertainty

δR = ½cτ =½w

δR – Distance uncertainty

τ – Pulse duration

Laser spot large compared to 

target features

w – Pulse width (cτ) w = c.τ 

Propagating divergent pulse
8
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Beam Divergence

D
λ

emitting element

Diffraction causes beam divergence: θ ≈ 1.22λ/D 

St
R

θ

θ

St – Minimum resolvable transverse size at distance R  
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Beam Divergence

Radar: 77 GHz −> λ = 0.3 cm. 

If D = 20 cm −> θ ≈ 1° −> St ≈ 1.8 m + 0.2 m = 2 m @ R = 100 m    

LiDAR: 1550 nm         

If D = 5 mm −> θ ≈ 0.02° −> St ≈ 3.7 cm @ R = 100 m         

For high-resolution 3D map, we need LiDAR
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ToF LiDAR: timing

start pulse

stop pulse

Δt

ST

SR

trigger level

trigger level

T

Δt

time

start pulse start pulseT

stop pulse

time

T – repetition period

T must be > Δt
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ToF LiDAR: maximum distance

Rmax = ½cT = ½ c
f

f – Repetition frequency or sampling frequency

Photon budget imposes another limit on Rmax
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ToF LiDAR: minimum distance (ideal case)
id

ea
l p

ho
to

de
te

ct
or

 

re
sp

on
se

timetr tr

trigger level

τ τ

T

uniform pulses

Δt

There is no limit on the smallest distance 

B = ∞

tr = τ

T > τ
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ToF LiDAR: minimum distance (realistic)
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uniform pulses

B finite

tr > τ

Signal pileup limits the smallest measurable distance

pileup

T > τ
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ToF LiDAR: maximum sampling rate

fmax = 1/Δtmax = c/2Rmax

fmax = 1.5 MHz @ R = 100 m 

Larger the range, more time it takes to produce a 3D map
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ToF LiDAR: challenges

Challenges and considerations in designing ToF LiDAR
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ToF LiDAR challenges: surround view

R = 100 m

20
°

360
°

0.2° resolution (~35 cm @ 100 m)

360° azimuthal coverage

20° declination coverage

Video rate, 20 frames/s

Would like

100 m range minimum
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ToF LiDAR challenges: sampling rate

To meet the challenge, we need 3.6×106 samplings/s (3.6 MHz)

Can do 1.5 MHz with one light source and photodetector @ R =100 m

Need to compromise and/or invent different approaches  
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ToF LiDAR challenges: light source

Short-duration pulses (can get 2 - 5 ns) at high repetition

High peak power per pulse Must comply with admissible exposure limit (AEL), which is 

a complex function of wavelength, repetition rate, and energy per pulse.

Narrow bandwidth

Safe for human vision
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ToF LiDAR challenges: photon budget

normal

target

specular 

reflection diffuse 

reflection

A0

illumination
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ToF LiDAR challenges: photon budget

P(R) – Power received

P0 – Peak power transmitted

ρ – Target reflectivity

A0 – Aperture area of the receiver

η0 – Receiving optics transmission 

γ – Atmospheric extinction coefficient

P(R) = P0ρ
A0

πR2
η0exp(-2γR)

This LiDAR equation assumes normal incidence, 

Lambertian reflection, flat beam profile and 

negligible divergence, laser spot smaller than the 
target, and γ independent of R. 
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ToF LiDAR challenges: photon budget
Figure from Williams (2017) 

Number of photons (λ = 1550 nm) expected from a 

target as a function of its range using 1,10, 100, 

and 1000 nJ pulses. 

The figure assumes target reflectivity of 30%, 

70% optical efficiency, 30-mm diameter receiver, 

0.5 mrad laser beam divergence, and 70% optical 

efficiency.

50-nJ 4-ns pulse (12.5 W) has: ~4×1020 photons 

@ 1550 nm
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ToF LiDAR challenges: photon budget

SNR(R) =
P(R)SλM

2eB[(P(R)+PB)Sλ + ID]FM2 +
4kTB

R0
√

Sλ – Detector’s sensitivity

M – Detector’s intrinsic gain

ID – Detector’s dark current

F – Detector’s excess noise factor 

B – Detection bandwidth

PB – Background light optical power

e – elementary charge; k – Boltzmann constant; 

T – temperature 

R0

APD

VBIAS
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ToF LiDAR challenges: what wavelength?

1550 nm 

- Requires IR (non-silicon) photodetectors 

+ Best eye safety 

905 nm 

+ Lower background 

+ Better transmission in atmosphere 

+ Silicon-based photodetector 

24
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ToF LiDAR challenges: what wavelength?

905 nm 1550 nm

Figure from Matson et al. 1983

Solar irradiance at sea level

PB @ 1550 nm <  PB @ 905 nm 

S
pe

ct
ra

l i
rr

ad
ia

nc
e 

μ
W

 c
m

-2
nm

-1

Wavelength [nm]
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ToF LiDAR challenges: what wavelength?

H2O absorption @ 1550 nm > (100×) @ 905 nm
26

From Wojtanowski et al. 2014 
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905 nm versus 1550 nm

Wet surface reflects more poorly @1550 nm versus @ 905 nm
27

Adapted from Wojtanowski et al. 2014 
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ToF LiDAR challenges: photodetector

+ High photosensitivity   

+ High gain   

+ Small jitter   

+ Small excess noise   
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Importance of jitter 

photodetector

timet = 0

D
et

ec
to

r 
ou

tp
ut

t1

t2

t3

t1, t2, t3, … transit times. Jitter 

represents variation in transit times.

Jitter is the main contributor to δΔt which affects distance resolution. 

100 ps jitter implies 1.5 cm depth uncertainty.   
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Importance of detector gain 

signal

noise

time

electronic noise

A
rb

.

signal?

No Gain

Output

+ =

photodetector

electronics
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Importance of detector gain 

time

electronic noise

Yes Gain

A
rb

.

Output

Yes signal!

+ =

photodetector

electronics
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Importance of excess noise 

time

S
ig

na
l

Fixed trigger level

Constant fraction trigger

Waveform 1

Waveform 2

Δt1 Δt2

Δt1= Δt2

Fixed trigger level gives different round-trip-times (Δt1 ≠ Δt2) ✖

Constant-fraction trigger gives the same round-trip-times (Δt1 = Δt2) ✔
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ToF LiDAR challenges: photodetector

APD is the most commonly used photodetector

✔ Gain up to ~100 (ok, but not great)

✔ High quantum efficiency

✗ Large excess noise

Could SiPM be the detector of choice?

33



Copyright © Hamamatsu Photonics K.K. All Rights Reserved

ToF LiDAR challenges: photodetector

…

VBIAS ~ 10’s V; a few volts above breakdown voltage  SiPM

Rf

Output of SiPM: Superposition of 

current pulses

Vout

RQ

APD

SiPM is an array of microcells connected in parallel. Each is a 

series combination of APD in Geiger mode and quenching resistor.
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SiPM  

✔ Gain (105 – 106) F≈1.3 ✔ ✓Photosensitivity at 905 nm
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SiPM  
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LiDAR  

Types of ToF LiDAR

37
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ToF LiDAR: Mechanical scanning  

ω

pulses of 

light

scene object

Velodyne LiDAR system: 64 channels 

(beams) 905 nm, 1.3 or  2.2×106 points per 

second,  5 - 20 Hz rotation, APD photo-

sensors.

scene object
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ToF LiDAR: Rotating multi-facet mirror  

laser diode

to target
ω ≈ 10 rev/s

timing &

processing

focusing mirror

~100 k pulses/s,

λ = 870 nm
2D

 d
et

ec
to

r

six-facet polygonal mirror;

each mirror has a different

tilt angle

top view

side view

Reference: Niclass et al. 2014   
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ToF LiDAR: Rotating multi-facet mirror  

FOV: 55°×9°

3D map in full daylight 

Sensor: SPAD 2D array 

10 frames/s 

Reference: Niclass et al. 2014   
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ToF LiDAR: Scanning with MEMS mirrors  

Light projector, 

with MEMS 

mirrors

detector

timing circuit

Light source

41
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Light projectors: MEMS mirrors  

fixed electrodes

g(θ)

Electrostatic actuation MEMS mirror Magnetic actuation MEMS mirror

mirror

Combining electrostatic and magnetic actuations allows 2D 

scanning (two axis rotation). 
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Light projectors: MEMS mirrors  

incident laser beam

MEMS mirror Reference: Patterson et el. 2004   

θmax – Total scan angle

δθ – Beam divergence (produced by 

the mirror ✖)

N = θmax/δθ – Number of resolvable 

spots (resolution)
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Light projectors: MEMS mirrors  

✔ Low cost

✖ Limited field of view

~ Size/frequency tradeoff

~ Frequency/beam divergence tradeoff

✔ Almost no moving parts
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Flash LiDAR

short (10’s ns) pulse of 

illumination illumination optics

detection optics

timing circuit

APD or 

SPAD array

scene object
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Flash LiDAR

✔ Resolution limited by the detector

✖ Small field of view

✖ Starved for photons, limited range

✔ No moving parts

46
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Optical phase array (OPA)

Optical Phased Array

Each element (pixel, ~30×30 μm2) receives and 

re-emits light with changed phase and amplitude.

Due to interference, the emitted far field radiation 

can be shaped into variety of patterns, for 

example beams.

Far-field radiation pattern

47
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Optical phase array (OPA)

Figure from Abediasl & Hashemi 2015 

✖ Lobes and beam divergence 

✖ Slow (due to cell tuning)

✔ No moving parts
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Another approach?

49

Designing ToF LiDAR at reasonable cost is very challenging 

What about a different approach borrowed from radar technology? 

Frequency modulated continuous wave (FMCW) LiDAR 
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Advantages of FMCW LiDAR

50

• Photon shot noise limited detection 

• Immune to photon background 

• Distance and velocity information in frequency domain 

• Lower-bandwidth electronics 
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FMCW Radar

t = 0 t = T t = 2T t = 3T time

frequency
f0 fmax f0 fmaxB

Chirp-modulation (triangular) of frequency
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FMCW Radar

f0

fmax

B

time2TTfD

fB1

fB2

Δtf(t)

transmitted

received

fB1 = 
2BR 

cT 
− 

2Vr

λ0

fB2 = − 
2BR 

cT 
− 

2Vr

λ0
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FMCW Radar

B2

B1

Δt

Δt

time

fr
eq

ue
nc

y

f0

f2,max

f1,max

Δf1

Δf2
T

Larger bandwidth gives better distance 

resolution 
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FMCW Radar

B

time

fr
eq

ue
nc

y

f0

fmax

T1 T2Δt

Δf1

Δf2

Shorter T gives better 

resolution
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FMCW LiDAR (heterodyne optical mixing)

tunable 

laser

fLO

BS

M

receiving optics

collimator

detector

returned light

M

M
M

M

to target

optical mixing 

occurs on the 

detector

frequency 

shifter
fPO= fLO+foffset

fa = fLO+foffset + Δf
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FMCW LiDAR (heterodyne optical mixing)

|Etot|
2 = |Ea + ELO|2 =  |Aacos(2πfat + φa) + ALOcos(2πfLOt + φLO)|2

|Etot|
2 = |Ea|

2 + |ELO|2 + AaALOcos[2π(fa – fLO)t + (φa – φLO)]

Psig = Pa + PLO + 2√PaPLOcos[2π(fa – fLO)t + (φa – φLO)]

isig = = ia + iLO + 2√iaiLOcos[2π(fa – fLO)t + (φa – φLO)]
ηePsig

hf

PD
BS

fa

fLO

fa – fLO = Δf + foffset

measure thisamplification!

We get Δf, and thus R and VR
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Coherent detection

Optical mixing of two beams;

g– overlap factor

For maximum signal:

• the beams must overlap (ideally g = 1)

• wavefronts must have the same shape

• polarization is the same

• spatial coherence

g

57

detector surface
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Coherent detection

S

N

gηPs

2hfB
≈

g – overlap factor; η – photodetector quantum efficiency; B – detection bandwidth

By making PLO large enough, one can make the detection photon-

shot noise limited. 

Photodiode can be used for the photodetection.

i2

(iSN)2=

58
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Balanced detection

50/50 BS

signal

Local oscillator 

signal

I1

I2

I1 – I2 I1 = (ηe/hf)[½Plo + ½Ps  +  (PsPlo)½sin(Δωt + φ)]

I2 = (ηe/hf)[½Plo + ½Ps  - (PsPlo)½sin(Δωt + φ)]

I1 - I2 = 2(ηe/hf)(PsPlo)½sin(Δωt + φ)

+/- are due to π/2 shifts when 
light reflects from the BS

Excess noise of LO (through the DC part) can reduce S/N. Remedy: use balanced 

detection. 
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Balanced photodiodes by Hamamatsu

Balanced photodiode module offered by Hamamatsu

Hamamatsu also offers matched bare photodiodes

60

Amplifier

AmplifierI/V Amplifier

Amplifier

INPUT -

INPUT +

Mon -

Mon +

OUT
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Coherent detection: working example

Gao & Hui 2012

B = 4.3 GHz

λ = 1549.54 nm 
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Is there a perfect LiDAR?

62

LiDAR 

System

Range Reliability Cost Size Systems 

per car

Mechanical Long Good Mid. to high Bulky 1

MEMS based Medium to long Good Low Compact 1 – 4 or more

Flash Short Very good Low Compact 1 – 4 or more

Optical Phase Array    Advantages: solid state design with no moving parts

Disadvantages: loss of light that restricts the range

FMCW                        Advantages: immune to background, photon shot noise detection

Disadvantages: data processing intensive, still requires beam steering

Not yet…
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Summary & Conclusions

• Some form of LiDAR is likely to be needed on self-driving car

• ToF LiDAR is very challenging to design

- Beam steering and photodetection are the most 

outstanding challenges 

• There is a growing interest in FMCW LiDAR with optical mixing

63

• There is no default LiDAR design yet; work in progress
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Upcoming Webinar (January 2018)

Silicon Photomultiplier: Operation, Performance, & Optimal Applications

Presenter: Slawomir Piatek

Host: Laser Focus World

Wednesday, January 10, 2018
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Visit Booth #521 & Presentations at PW18

Development of an InGaAs SPAD 2D array for Flash LIDAR 

Presentation by Takashi Baba, January 29, 2018 (11:00 AM - 11:30 AM) 

Development of an InGaAs MPPC for NIR photon counting applications 

Presentation by Takashi Baba, January 30, 2018 (5:50 PM - 6:10 PM)

Photodetectors, Raman Spectroscopy, and SiPMs versus PMTs

One-day Workshop with Slawomir Piatek, January 31, 2018 (8:30 AM - 5:30 PM) – Free Registration Needed

Development of a Silicon hybrid SPAD 1D array for LIDAR and spectrometers 

Poster session with Shunsuke Adachi, January 31, 2018 (6:00 PM - 8:00 PM)
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Thank you for listening!

• Speaker Contact – Slawomir Piatek (spiatek@physics.rutgers.edu)

• LiDAR Inquires to Hamamatsu – Jake Li (jli@Hamamatsu.com)
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