

Extreme Ultraviolet Light Sources Supporting Next-Generation Lithography

Sam Gunnell EUV Product Manager

7/14/2020 • 1

Overview

Introduction

- What is Photolithography?
- Moore's Law
- Current State
- Why EUV?
- Key challenges
 - EUV Mask
 - EUV Photoresist
- EUV Sources for Research & Metrology
- Applications for EQ-10 Electrodeless Z-Pinch EUV Source

What is Photolithography?

Photolithography is a process used in semiconductor device fabrication to pattern an integrated circuit onto a silicon wafer. It uses light to transfer a geometric pattern from a photomask to a photosensitive chemical photoresist on the substrate.

A series of chemical treatments then either etches the exposure pattern into the material or enables deposition of a new material in the desired pattern upon the material underneath the photoresist.

Source: Engadget, 2020

...States that transistor density of an integrated circuit doubles approximately every 24 months

...Represents an observation on the continuous improvement of production methods, particularly photolithography

Resolution Enhancements Drive Moore's Law

$$CD = k_1 \times \frac{\lambda}{NA}$$

CD ... critical dimension k_1 ... process factor λ ... wavelength NA ... numerical aperture

Current state of Photolithography

Source: Zeiss, 2020

- 193nm exposure wavelength
- ArF laser source
- Transmissive mask
- Transmissive projection optics

193nm Lithography at the Limit

The current state of the art has reached its physical limits. The structures on a chip are now many times smaller than the wavelength of light used to make them, and any more progress will require a big change.

...Extreme Ultraviolet Lithography reduces the exposure wavelength from 193nm to 13.5nm, resulting in smaller critical dimensions in fewer process steps

$$\downarrow CD = k_1 \times \frac{\lambda}{NA}$$

Lithography Timeline

Source: Zeiss, 2018

14x Wavelength Reduction...

...Introduces significant challenges

- Light-material interactions
- Defect control and metrology

The EUV Scanner

Source: ASML, Public, 2018

Key Challenge: EUV Mask

Source: Engadget, 2020

- The EUV Mask is a patterned multilayer mirror
- The mask must be perfect to ensure defects are not transferred to the wafer, affecting yields
- Multiple inspection steps required throughout the manufacture and lifetime of the mask
- Only EUV inspection can "see" all defects

Key Challenge: EUV Photoresist

- Photoacid Generation in EUV lithography is significantly different from DUV
- New chemistries required
- Candidate resists must be studied under EUV illumination before use in manufacturing

Source: AMOLF, 2018

EUVL HVM Roadmap

Requires access to EUV photons for fundamental research and metrology/inspection

Why not use the scanner source?

Source: ASML, 2018

- Massive footprint
- Driven by >20kW CO2 laser
- Prohibitively expensive to own and operate
- 250W EUV at intermediate focus
- Not suitable for research or metrology applications

Alternative sources

Researchers and toolmakers need reliable, cost-effective, accessible sources of EUV photons

Synchrotron Radiation

- Used for fundamental research, especially for resist patterning studies and metrology development
- Many examples of industry collaboration with government labs and academic institutions
- Limited number of synchrotron facilities
- Limited number of beamlines dedicated to EUV research topics

Source: Synchrotron Soleil, 2005

Laser Produced Plasma Sources (LPP)

Source: Bits & Chips, 2017

- Same concept as scanner source, but on smaller scale
- High brightness (~100W/mm^2 sr) required for high-throughput patterned mask inspection in the fab
- Complex debris mitigation strategies required
- High cost of ownership for materials research and certain mask inspection applications during mask manufacturing process

Discharge Produced Plasma Sources (DPP)

EUV-emitting Z-pinch generated by electrical discharge in a target gas (Typically Xenon)

Z-pinch: uses an electrical current in the plasma to generate a magnetic field that compresses it

Source: Everythingiselectric.com, 2015

Electrode-based DPP

- EUV generation in Xenon gas by high current discharge across electrodes
- Suitable for materials applications such as photoresist R&D
- Electrodes experience high current densities and are in direct contact with plasma
- Debris, stability, and spatial variation of the EUV emitting area are not suitable for metrology applications in production environments

EQ-10 Electrodeless Z-Pinch EUV™ Source

- Unique inductive electrodeless DPP EUV source
- Pulse-to-pulse stability, spatial stability, and brightness suitable for certain metrology applications
- Ease of use and reliability suitable for photoresist R&D at Tier 1 semiconductor companies
- 13.5nm ±1% EUV Operation (Xenon)
 - Up to 20W into 2π steradians
 - Brightness 8W/mm^2 sr
 - Source size <500um diameter FWHM
 - Frequency up to 2.5 kHz

Principle of Operation

A HAMAMATSU Company

ENERGET

В

A

Typical Spectrum

A HAMAMATSU Company

1.2kHz 325V, 80mTorr Xe, corrected for Zr/polyimide filter, on-axis

EQ-10 in-band EUV Plasma Image

A HAMAMATSU Company

Applications

- Metrology
 - Actinic Mask Blank Inspection
 - Aerial Imaging for Patterned Mask Qualification
- Materials
 - Photoresist

Actinic Mask Blank Inspection

- Essential tool for EUV HVM infrastructure
- Enables high-sensitivity detection of printable defects inside Mo/Si multilayer

Aerial Imaging for Patterned Mask Qualification

- EQ-10 allows emulation of scanner conditions for qualifying patterned masks
- Masks can be optimized and repaired before use in scanner

Photoresist R&D Example

- Customized beamline and wafer chamber
- Reliable source of EUV photons for photoresist exposure and outgassing studies
- Exposure times depend on beamline, optics and resist under study
- Example system:
 - 20 mJ resist exposure time of ~30 seconds
 - i.e. 40 mJ/min

Exposed Wafer

Comparison of Alternative Sources

	EQ-10 (electrodeless)	DPP (electrodes)	LPP	
Brightness	\checkmark	\checkmark	$\checkmark \checkmark \checkmark$	
Cleanliness	$\checkmark\checkmark$	\checkmark	\checkmark	
Stability	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	
Reliability	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark$	$\checkmark \checkmark \checkmark$	
Cost	\$\$\$	\$\$	\$\$\$\$	
Applications	Mask Blank Inspection Patterned Mask Qualification Materials R&D	Metrology Research Materials R&D	Patterned Mask Inspection	

Summary

- EUV Lithography has entered high volume manufacturing for certain layers, but 193nm multi-patterning is still the primary production method
- Researchers and metrologists continue to need cost-effective sources of EUV photons to address EUV HVM roadmap and infrastructure requirements
- Each type of EUV source has its own advantages and disadvantages: there is no one-sizefits all solution
- The market for alternative EUV light sources is small, but rich with unique and highly differentiated technologies
- The Energetiq EQ-10 Electrodeless Z-Pinch EUV Source is a reliable and stable source of photons for EUV metrology and infrastructure development
- >30 systems sold and large installed base with consistent operation over 15 years

Thank you!

And please feel free to reach out with further questions

Contact Information:

Sam Gunnell EUV Product Manager sgunnell@energetiq.com

Join Us for 10 Weeks of FREE Photonics Webinars (17 Topics)

Week #	Weekly Topics	# of Talks	Talk #1 Date	Talk #2 Date		
1	Introduction to Photodetectors		26-May-20	28-May-20		
2	Emerging Applications - LiDAR & Flow Cytometry		2-Jun-20	4-Jun-20		
3	Understanding Spectrometer	2	9-Jun-20	11-Jun-20		
1 Weeks Break						
4	Specialty Products – Introduction to Light Sources & X- Ray	2	23-Jun-20	25-Jun-20		
5	Introduction to Image Sensors	2	30-Jun-20	02-Jul-20		
1 Weeks Break						
6	Specialty Products – Laser Driven Light Sources	2	14-Jul-20	16-Jul-20		
7	Image Sensor Circuits and Scientific Camera	2	21-Jul-20	23-Jul-20		
8	Mid-Infrared (MIR) Technologies & Applications	2	28-Jul-20	30-Jul-20		
1 Weeks Break						
9	Photon Counting Detectors – SiPM and SPAD	1	11-Aug-20			
10	Using SNR Simulation to Select a Photodetector	1	18-Aug-20	-		

•To register for other webinars or hear previous webinar recordings, please visit link below:

•https://www.hamamatsu.com/us/en/news/event/2020/20200526220000.html

Thank you

For additional information about Energetiq's innovative light sources, please visit www.energetiq.com.

