

Challenges of Circuitry to A Successful Image Sensor Implementation

Lu Cheng Hamamatsu Corporation

July 21, 2020

Outlines

- Prerequisite: Introduction to Image Sensors
- Types of image sensors: CCD vs. CMOS
- A typical system architecture of image sensor implementation
- Challenges to achieve the target performance
- A CCD driver circuit example
- Design verification test approach

Types of image sensors: CCD vs. CMOS

	CCD	CMOS (APS)	2 CCD
Pixel output	Charge	Voltage	<u> </u>
Chip output	Analog voltage	Digital / Analog	5
Fabrication	Specialized CCD process	Standard VLSI	
Data rate	Slow	Fast	
Full well capacity	Very High ~300Ke-	High ~80Ke-	9999
Readout noise	Extreme Low ~5e-rms	Low ~20e-rms	Q⇒V CMOS
Linearity	Very good	Good	
Input bias	Multiple phase clocking High voltage	Single clocking 3.3/5 V DC	hift regis
Driver circuit	Complex	Simple	■► ■► ■► ter
Sensor operation	Binning, TDI	Partial readout	H-shift register CDS, ADC, etc

Hybrid-structure image sensors

Special light receiving part + CMOS ROIC == CMOS readout

CCD chip + CMOS ROIC = CCD TDI / Binning + Digital outputs

Image sensor specifications

- Spectral range: the wavelength range to detect UV, visible, IR.
- Active area: light receiving area to fit in the optic path.
- **Resolution**: pixel size, array format.
 - -- Linear vs. Area scan vs. Line scan
- **Dynamic range:** max SNR which is unachievable.
 - -- DR = Full well capacity / Readout noise
- Sensitivity: the output charge/voltage responding to the incident light.
- **Dark current**: thermal carriers generated without input light.
- **Cooling option:** built-in TE cooler or uncooled.
- **Speed:** the max video rate is limited by charge transfer speed.
- Longevity and price

Headache just started when an image sensor meeting all the requirements was being selected!

A typical image sensor implementation

System architecture

System and Circuit Specifications

Sensor design

Analog/digital circuit design

Challenges to achieve the target performance

SNR = Signal / Noise

Signal in Volts = Pi x QE x A x FF x T_{int} x CE

Signal in e-

- Pi Incident photon flux
- QE Quantum efficiency
- A Pixel active area
- FF Fill factor
- T_{int} Integration time
- CE Conversion efficiency (V/e-)

Noise – can be improved by careful circuit design.

When the optic path is set up and the image sensor is selected Pi, QE, A, FF, CE are determined.

Noises need to be considered

Temporal noise -- sensor

- can be reduced by multiple frame averaging
- Readout noise
- Dark current shot noise
- Photon shot noise

Fixed pattern noise -- sensor

- can be reduced by frame subtraction or gain / offset correction
- Dark current non-uniformity
- Photo-response non-uniformity

System noise -- electronics

- can be optimized by careful circuit design
- ADC quantization noise
- Clocking noise
- Power supply / GND instability
- Temperature fluctuation

Illuminated Dark Below saturation Above saturation (FPN) Dark signal nonuniformity Photo-response nonuniformity Pixel random Pixel random Shading Shading Noise Dark current nonuniformity Pattern (Pixel-wise FPN) (Row-wise FPN) (Column-wise FPN) Fixed Defects Dark current shot noise Photon shot noise Noise Temporal Read noise (Noise floor) Amplifier noise, etc. (Reset noise) Smear, Blooming Image Lag

Image sensor noise matrix

Ref: Nakamura

Readout noise

Shot noise

Dark current / Dark current shot noise

$$\sigma_D = \sqrt{Dt_{exp}}$$
 (in e-)

Dark current vs. temperature

Signal shot noise

$$\sigma_S = \sqrt{St_{exp}}$$
 (in e-

*The maximum SNR occurs at the near-saturation level where the signal shot noise is dominant.

Operating temperature and exposure time need to be decided to meet the system SNR requirement.

Fixed pattern noise

- FPN is specified by Dark Signal Non-Uniformity (DSNU) in dark; and specified by PRNU with illumination.
- DSNU can be eliminated by subtracting a dark reference frame from each image.
- The dark reference frame should be taken at the same temperature and with the same integration time as the signal image.

Photo-response non-uniformity (PRNU)

- Due to wafer process variations, not all pixels demonstrate the same sensitivity to light.
- The noise can be removed by 'flat-fielding' calibration process.
- The pixel-to-pixel variation could be wavelength dependent.
- The noise can be reduced by the gain calibration to each pixel at specific wavelength.

System noise

- ADC quantization noise
- -- Can be ignored when ADC is selected properly.

- Clocking noise
- -- Caused by variation in the level of clock feedthrough.
- -- A function of the clock frequency ~ \sqrt{Hz}

- Temperature fluctuation
- -- Built-in single- or multiple-stage TE cooler and thermistor in sensor package.
- -- Temp control circuit to stabilize temperature.

Electronic noise

Types of Analog-to-Digital Conversion

ADC selection

ADC selection rules:

- Select ADC resolution (bit depth: 2^N -1) considering
- -- Dynamic range = FWC / Nread
- -- ADC 1 LSB >= Readout noise
- Select ADC input range considering the sensor output voltage range.
- -- Saturation level ~= FWC (e-) * CE (uV/e-)
- -- DC offset voltage output
- ADC sampling frequency must be at least 2X higher than the pixel rate to meet Nyquist Criteria.

Design tips:

- In the PCB layout design, put ADC as close as possible to the sensor video output.
- The ADC with differential inputs is recommended if the ADC can't be put close to the sensor.
- At the ADC output, damping resisters can be added to reduce the noise on digital signals.

Bit depth	Digital number	ADC 1LSB@3.3V
10	1023	3.2 mV/DN
14	16,383	201.4 uV/DN
16	65,535	50.3 uV/DN
18	262,143	12.6 uV/DN
24	16,777,215	0.2 uV/DN

Sensor outputs roll off at different levels due to the process variation.

In **Design 1**, ADC saturates after all the sensors roll off -> large digital dynamic range.

In **Design 2**, ADC saturates before any sensor rolls off -> keep linearity in the whole digital output range.

Linearity correction

- The linear range of the sensor output can be extended by conducting linearity correction on each sensor/pixel.
- CCD: pixel-to-pixel variation can be ignored.
- CMOS: each pixel needs to be calibrated.
- A fitting coefficient can be generated for each sensor/pixel during the calibration procedure.

In **Design 3**, ADC saturates at the expected ideal saturation level.

ADC to FPGA / MCU interfacing

Digital I/O	Parallel CMOS	Parallel LVDS	SPI	I2C	
Signal format	out Vdd GND	outn - , , , , , , , , , , , , , , , , , ,	SCLK MOSI Master SS2 SS3 SS4 SS2 SS3 SS3	μC ADC DAC μC Master Slave Slave Slave	
Signal #	1 pad per bit	2 pads per bit	4 wires: SCLK,MOSI,MISO,CS	2 wires: SDA and SCL	
Speed	~35M Hz	~200M Hz	Up to 100M Hz	400K ~1M Hz	
Interface type	Data	Data	Data and Control	Data or Control	
Termination	Open	100Ohm	Serial R to match TL impedance	Rp is required	
Current	0	3.5mA/Pair	~300uA	~30uA	

A CCD driver circuit example

Sensor vs. Circuit specifications

S10420/S11071 area CCD series

- 1. Pixel rate: 250K~10M Hz
- 2. FWC: 60Ke- vertical; 200~300Ke- horizontal
- 3. Conversion Efficiency: 6.5uV/e-, 8uV/e-
- 4. Readout noise: 6 ~ 25e- rms
- 5. DC bias: VOD=24V, VRD=12V
- 6. Clocks: P1V, P2V = (6V, -8V),
 - P1H, P2H, P3H, P4H = (6V, -5V)

Pixel size: 14um x 14um Array format: 2048 x 64 S10420 -- Low noise BT-CCD S11071 -- High speed BT-CCD

CCD driver circuit

- 1. Data acquisition rate: 10M Hz max
- 2. Bit depth: 16-bit, 65,535 ADU
- 3. ADC input range: 4V max
- 4. Read noise < 25 e-rms @ 10MHz
- 5. Power supply: single 12V
- 6. Variable output regulator is required

Additional system-level features

- 1. Accommodate both area scanning and linebinning modes.
- 2. External trigger input and synchronization output (BNC connectors).
- 3. High-speed real-time and dedicated communication with PC: Camera Link interface is selected.

CCD driver circuit data flow

- 1. Sensor video output OS
- 2. Digital video data
- 3. DC bias (OD, RD, etc.)
- 4. CCD clock inputs (P1V, P1H, etc.)
- 5. Digital CCD clock inputs (0~3.3V)
- 6. Cam. Link/USB data input
- 7. Circuit control commands
- 8. Cam. Link/USB data output
- 9. Circuit control commands
- 10. Image data from CL
- 11. Circuit control command I/O

Emitter follower: highspeed switching transistor TR1 was selected to handle high frequency and high voltages.

PHOTON IS

OUR

A-to-D Conversion

Design 1:

- Imaging signal processor AD9826 was selected for:
- -- 16-bit ADC 15 MSPS.
- -- 4Vpp input range.
- -- Total noise: ~3 LSB
- -- Built-in CDS.
- -- 1~6X PGA.
- -- +/- 300mV programmable offset.
- -- SPI data output.
- -- Power consumption: 300mW.
- -- High BOM cost.

Design 2:

- General-purpose ADC can be selected.
- CDS and VGA can be designed

separately.

Design 2: 1st stage amplifier

- Non-inverting unity gain buffer.
- -- Input voltage range +/-5V.
- -- High input impedance.
- -- High gain bandwidth product 1.6 GHz.
- -- Slew rate 700 V/us.
- -- Low input voltage noise 4.8 nV/ \sqrt{Hz} .

Design 2: CDS circuit

Design 2: Variable Gain Amplifier (VGA)

- Inverting Op-amp configuration with resistance network.
- Variable gains of X1, X5, X10, X50 can be configured by FPGA settings through the switch ADG621.

Power supply

- Analog and digital power supplies generated from external single +12V power supply
- -- Analog: $+12V \rightarrow +24V$; $+12V \rightarrow -12V$
- -- Digital: +12V \rightarrow 5V; +12 \rightarrow 3.3V
- -- Low-noise linear regulator is preferred since the noise from power supply has direct impact on the video signal.

 DC bias voltages generated from analog power supply.

 Multiple-phase clock voltages generated from analog power supply.

Parameter		Symbol S11071 set		11071 serie	ries S10420-01 series		ries	11		
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	
Output transistor drain voltage			VOD	12	15	18	23	24	25	V
Reset drain voltag	e		VRD	14	15	16	11	12	13	V
Overflow drain vol	tage		VOFD	11	12	13	11	12	13	V
Overflow gate volt	age		VOFG	0	13	14	0	12	13	V
Output gate voltag	je		VOG	4	5	6	4	5	6	V
Substrate voltage			VSS	-	0	-	-	0	-	V
Output amplifier re	eturn voltage* ⁴		Vret	-	1	2				V
	Input source		VISV, VISH	-	VRD	-	-	VRD	-	V
Test point	Vertical input gate		VIG1V, VIG2V	-9	-8	-	-9	-8	-	V
	strate voltage put amplifier return voltage* ⁴ Input source Vertical input gat Horizontal input tical shift register clock voltage		VIG1H, VIG2H	-9	-8	-	-9	-8	-	V
Vertical shift register clock voltage		High	VP1VH, VP2VH	4	6	8	4	6	8	V
		Low	VP1VL, VP2VL	-9	-8	-7	-9	-8	-7	v
Horizontal shift register clock voltage Low		High	VP1HH, VP2HH VP3HH, VP4HH	4	6	8	4	6	8	V
		Low	VP1HL, VP2HL VP3HL, VP4HL	-6	-5	-4	-6	-5	-4	v
Cumming gate valtage		High	VSGH	4	6	8	4	6	8	V
umming gate voltage	lage	Low	VSGL	-6	-5	-4	-6	-5	-4	v
Report gate voltage High		High	VRGH	4	6	8	4	6	8	V
Reset gate voltage		Low	VRGL	-6	-5	-4	-6	-5	-4	v
Transfer gate voltage High		High	VTGH	4	6	8	4	6	8	V
inalisiel gate volta	iye	Low	VTGL	-9	-8	-7	-9	-8	-7	v

Clock driver

HAMAMATSU PHOTON IS OUR BUSINESS

Design verification approaches

Verify responsivity and linearity

C11287: USB2.0 powered CCD driver circuit 14-bit ADC: 16,383 ADU at saturation

Exposure time can be adjusted by either adjusting integration time or adjusting the light source 'on' time.

Example

S10420: BT-CCD image sensor FWC = 200K e-Readout noise = 6 e- rms typical Dynamic range = ~33,000

Max SNR occurs at near-saturation assuming photon shot noise is dominant. Calculated max SNR = SQRT(FWC) = 447.

The measured SNR at near-saturation is 439

Near-saturation

Over-saturation

	Hamamas	stu S10420	+ C11287	Amp gain=1	Offset=400		
	Texp(ms)	Dark (ADU)	Total Output (ADU)	Signal subtracted dark (ADU)	STD (ADU) over 100 images	SNR	ĸ
	1	170	873	703	8	87	10.76
	10	199	1463	1264	11	116	10.58
	20	223	2116	1893	13	147	11.34
	40	271	3399	3128	16	195	12.14
<u>.</u>	80	368	5927	5559	21	262	12.34
ssuming	100	417	7169	6752	23	288	12.33
- 117	120	467	8414	7947	25	315	12.46
= 447.	140	517	9631	9114	27	342	12.8
n is <mark>439</mark>	160	567	10839	10272	29	354	12.22
	180	616	12050	11434	30	387	13.09
	200	666	13235	12569	32	398	12.6
	220	738	14420	13682	32	422	13.01
	240	788	15594	14806	34	438	12.96
	250	813	16173	15360	35	439	12.54
	260	837	16382	15545	1	18376	21722

Photon Transfer Curve (PTC)

The camera constant K equals 1/slope on a linear plot σ_s^2 (variance) vs. S (signal).

 $K = S/\sigma_S^2$

S: output signal in ADU

 ${\sigma_{\text{S}}}^2\!\!:\text{variance} \text{ in } \text{ADU}^2$

Transfer function verified: K extracted from PTC measurement = Calculated K based on design specs

Verify transfer function

System transfer function

Signal (DN) = $P^{*}QE^{*}CE^{*}A1^{*}A2$ K = 1/(CE*A1*A2)

Where, CE=6.5uV/e-, A1=1, A2=79uV/DN

C11287 calculated K = 12.2 e-/ADU

Summary

- 1) Select an image sensor: type of sensor, quantum efficiency, pixel size, array format, sensitivity, dark current, and speed.
- 2) Decide system specifications and circuit specifications.
- 3) Achieve target system performance by considering sensor noises and system noises and conducting careful circuit design.
- 4) Design ADC properly considering bit-depth, saturation level, sampling frequency, input range, and offset compensation.
- 5) Choose proper ADC to FPGA interfacing.
- 6) Design FPGA/MCU to generate the timing control signals.
- 7) Verify the system transfer function, linearity, and signal to noise ratio.
- Conclusion: fully understanding of the image sensor operation is required to implement a successful system around an image sensor.

Image sensors targeting different applications

HAMAMATSU PHOTON IS OUR BUSINESS

FA/Displacement meter

Encoder/Barcode reader

Hamamatsu expertise

Optics	Opto-semiconductor	Circuit	Software		
Suitable optical designs (for lenses, mirrors, filters, etc.) that are based on vast experience	You can select from a wide lineup of standard products or have a new device developed.	Unique Hamamatsu analog and digital circuit designs that can handle low light levels (we can handle circuit design and pattern design)	We have the flexibility to design firmware for micro- controllers, FPGAs, DSPs, etc., as well as application software.		

www.hamamatsu.com