

Advances in Testing and Calibration of Modern Optical Sensors

Bill Grube

Sr. Product Marketing Manager July 16, 2020

Agenda:

Part 1: Optical Sensor Examples – Types, Uses, and Tests

- Ambient light sensors
- Image sensors
- 3D sensing

Part 2: Optical Sensor Testing & Calibration Tools

- Testing and calibration challenges
- Existing test tools
 - Strengths and weaknesses

Part 3: Energetiq Contribution: Laser-Driven Light Sources

Agenda:

Part 1: Optical Sensor Examples – Types, Uses, and Tests

- Ambient light sensors
- Image sensors
- 3D sensing

Part 2: Optical Sensor Testing & Calibration Tools

- Testing and calibration challenges
- Existing test tools
 - Strengths and weaknesses

Part 3: Energetiq Contribution: Laser-Driven Light Sources

Display Optimization in Handheld Electronics

Image Credit: Consumer Reports

- Adjusting display intensity based on ambient conditions.
 - Ambient Light Sensor

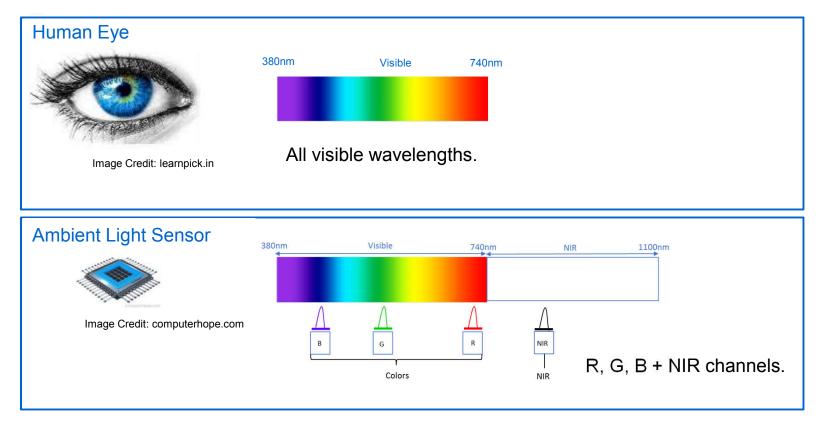
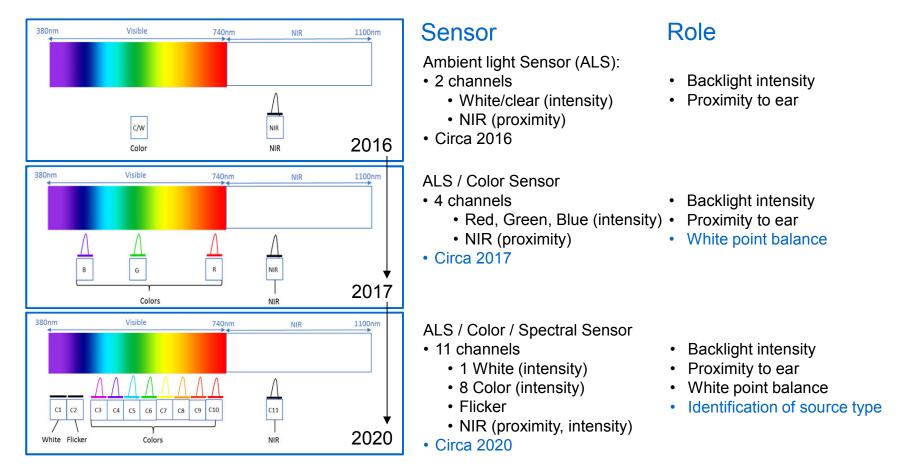


Image Credit: deccanchronical.com

- Adjusting white point balance on display based on ambient conditions.
 - Ambient Light Sensor

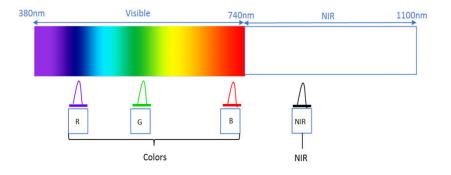


Ambient Light Sensors Emulate Human Vision

Evolution of Ambient Light Sensors in Handheld Electronics

Ambient Light Sensor Test & Calibration Procedures

Goal:


• Eliminate or compensate for unit-to-unit variations in photodiodes and wavelength-specific filters.

Method:

- Scan of "monochromatic" (narrow band width) light with reference measurement.
- < 10nm bandwidth typically required.
- Uniform <u>spectral content</u> and <u>intensity</u> over multiple sensors under test.

Lights Source Types:

- LED-based tunable light sources.
- Monochromator-based tunable light sources.
- Filter-based tunable light sources.

Agenda:

Part 1: Optical Sensor Examples – Types, Uses, and Tests

• Ambient light sensors

• 3D sensing

Part 2: Optical Sensor Testing & Calibration Tools

- Testing and calibration challenges
- Existing test tools
 - Strengths and weaknesses

Part 3: Energetiq Contribution: Laser-Driven Light Sources

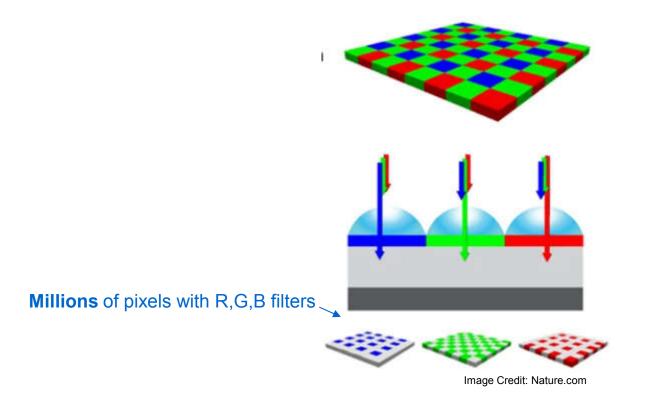
Image Sensor Applications

Product types:

- Smartphones
- Laptops & tablets
- Mobile gaming devices
- Security cameras
- Automotive and transportation
- Digital cameras & camcorders
- Medical systems
- Machine vision
- Science & space

- 1 camera/4 people in US & China
- 2019 production: 180M²

```
Image Credit: The Guardian.com
```



Image Credit: Researchgate

1: IHS Markit, Security Technologies Top Trends for 2019 2: HIS Markit

7/16/2020 • 9 3: Markets and Markets, Automotive Camera Market by Application, Basis year 2019.

Image Sensors Fundamentals

Image Sensor Characterization Procedures

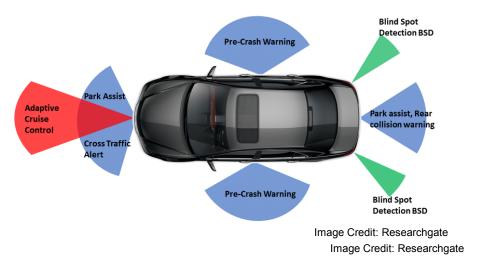
European Machine Vision Association (EMVA) Standard 1288 Standard for Characterization of Image Sensors and Cameras

- Spectral properties hot vs. cold pixel identification:
 - Homogeneity is important flat field source, integrating sphere.
 - LED or broadband source (incandescent bulb, arc lamp) with bandpass filter.
 - Evaluate at color channel wavelengths (RGB).
 - Bandwidth: FWHM < 50nm.
- Spectral sensitivity:
 - Requires light source that can be scanned over wavelength range.
 - A monochromator is typically used.
 - Wavelength range: 350nm 1100nm
 - Bandwidth: FWHM ~ 10nm.
 - Step size: < 2nm

Agenda:

Part 1: Optical Sensor Examples – Types, Uses, and Tests

- Ambient light sensors
- Images sensors


Part 2: Optical Sensor Testing & Calibration Tools

- Testing and calibration challenges
- Existing test tools
 - Strengths and weaknesses

Part 3: Energetiq Contribution: Laser-Driven Light Sources

3D Sensing in Automotive

- Advanced Driver Assistance Systems (ADAS)
 - Parking
 - Lane change
 - Blind spot detection
 - Adaptive cruise control ...

Other 3D Sensing Applications

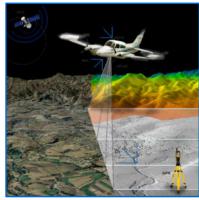
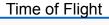


Image Credit: sapub.org

Image Credit: geospatialworld.net

Image Credit: forbes.com

Large number of 635nm, 785nm, 850nm, 905nm, 940nm bandpass filters needed.


3-D Sensing in Handheld Electronics – Facial Recognition

Structured Light

Image Credit: KU Leuven

Image Credit: Photonics.com

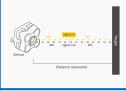
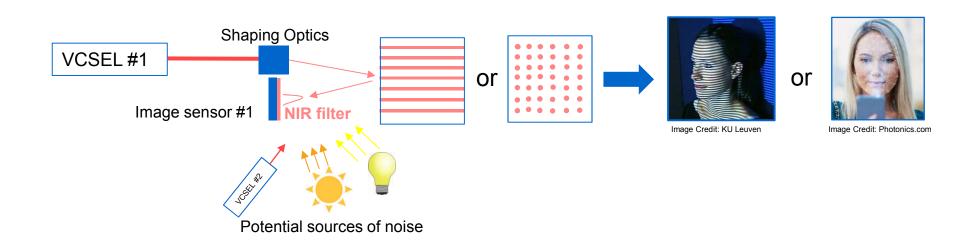


Image Credit: Terabee

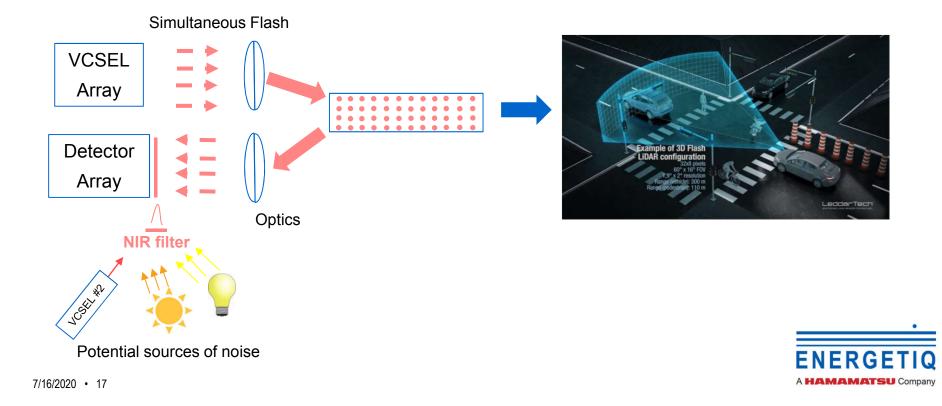
Image Credit: Clipdealer


- Structured Light Sensing
 - Coherent laser light in NIR band
 - Sensor includes NIR Bandpass Filter
 - Time of flight (TOF) Light Detection and Ranging (LIDAR)
 - Coherent laser light in NIR band
 - Sensor includes NIR bandpass filter
 - Color adjusted photograph
 - Ambient Light Sensor

Optical Sensor Market Trends

- 1. Growth of 3D sensing
- 2. Integration of sensor data

3D Sensing Sensor Fundamentals


Structured Light

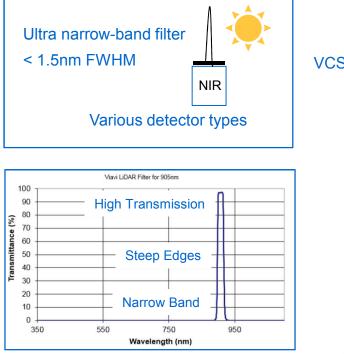
3D Sensing Sensor Fundamentals

Time of Flight LIDAR – Flash

3D Sensing Filter Test Procedures

Goal:

- Verification of filter performance for blocking unwanted wavelengths from the sun and other sources.
 - Reduce noise, increase signal to noise ratio.


Method:

- Scan of "monochromatic" (very-narrow band width) using spectrophotometer.
- < 1.5 nanometer bandwidth.

Lights Source Types:

- Spectrophotometer with source:
 - Xenon (Xe) arc lamp
 - Quartz tungsten halogen (QTH) lamp

7/16/2020 • 18

VCSEL wavelengths: 635 nm 785 nm 850 nm **905 nm** 940 nm **1550 nm** ...more

Agenda:

Part 1: Optical Sensor Examples – Types, Uses, and Tests

- Ambient light sensors
- Images sensors
- 3D sensing

Part 2: Optical Sensor Testing & Calibration Tools

- Testing and calibration challenges
- Existing test tools
 - Strengths and weaknesses

Part 3: Energetiq Contribution: Laser-Driven Light Sources

Sensor test challenge #1: High precision

Ambient light sensor calibration

- Increasing number of channels.
- Increased algorithm complexity: Backlight control --> identification of source type.

Image sensor characterization

- Increasing number of pixels (resolution).
- Increasing algorithm complexity: Photos, Videos artificial intelligence.

LIDAR filter test

- Increasing number of LIDAR wavelengths used.
- Increased algorithm complexity: Range finding —> identification of hazards.

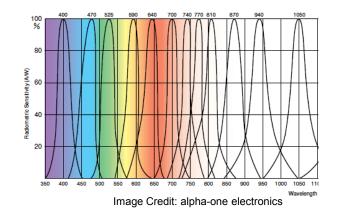
Repeatable performance is key!

Sensor test challenge #2: High volume

Smartphone production environment

- 1.5B^A phones manufactured each year.
 - Two ALS sensors per phone: 3B sensors/year.
 - Two 3D sensors per high-end phones: 250M sensors/year.

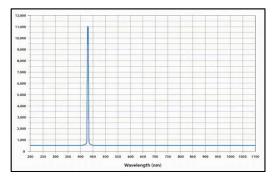
Automotive production environment


- 53M cars per year manufactured with some level of ADAS by 2022-2024^B.
 - Six 3D sensors in each: 318M filters/year.
 - On average >2 cameras/car by 2023.

Process throughput is valuable – "time is money" in production.

A. Source: StatisticaB. Source: Yole Development.

LED-Based Tunable Sources (ALS & Image Sensor)


Strengths:

- Amount of light output.
- Can be used with integrating sphere for high uniformity.

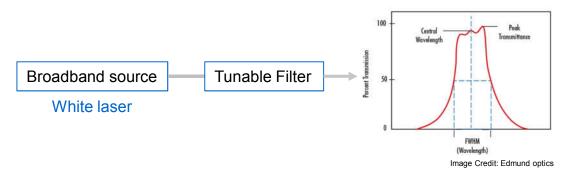
Weaknesses:

- Finite number of wavelength steps in scan.
- Serial measurement limited by LED thermal stabilization time needed for wavelength and amplitude accuracy.
- Bandwidth varies with each LED.
- Limited to diffuse illumination.

Monochromator-Based Sources (ALS & Image Sensors)

Traditional sources (Xe arc, QTH) paired with monochromator

Strengths:


- Meet bandwidth requirements.
- Small wavelength steps across scan.
- Flexible monochromator configurations.

Weaknesses:

- Limited light throughput in narrow band.
- Serial measurement potentially limited by throughput.
- Short life of bulbs frequent maintenance.

Filter-Based Sources (ALS & Image Sensors)

Filter-Based Tunable Light Sources

Strengths:

- High optical throughput.
- High out of band extinction/suppression.

Weaknesses:

- Amplitude variation.
- Tunable wavelength range limited.
- Potential issues with laser speckle.
- Not a true continuous source, pulsed source.

Spectrophotometer (LIDAR Filters)

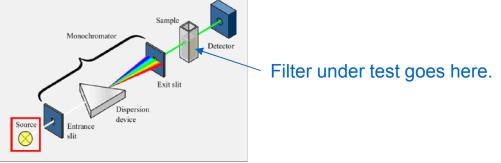


Image Credit: ResearchGate

Traditional source (Xe, QTH)-Based Spectrophotometer

Strengths:

- Meet bandwidth requirements.
- Small wavelength steps across scan.
- Flexible monochromator. configurations.

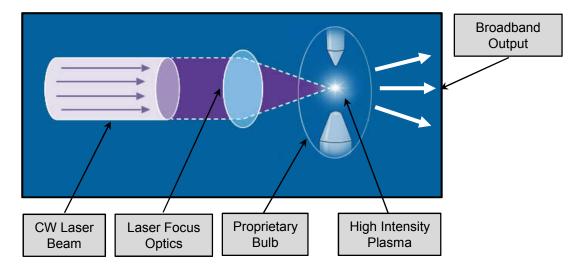
Weaknesses:

- Limited light throughput in very-narrow band (<1.5nm).
- Short life of bulbs.

Agenda:

Part 1: Optical Sensor Examples – Types, Uses, and Tests

- Ambient light sensors
- Images sensors
- 3D sensing

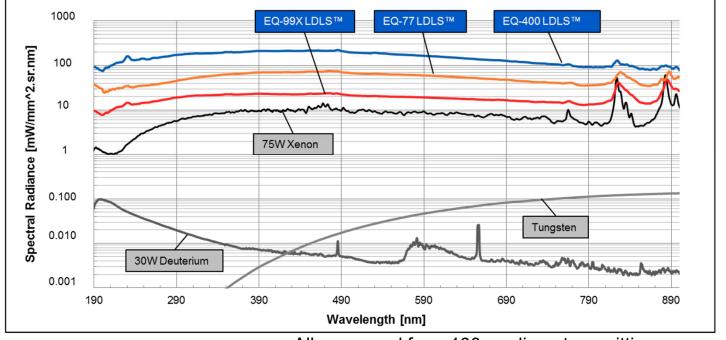

Part 2: Optical Sensor Testing & Calibration Tools


- Testing and calibration challenges
- Existing test tools
 - Strengths and weaknesses

Part 3: Energetiq Contribution: Laser-Driven Light Sources

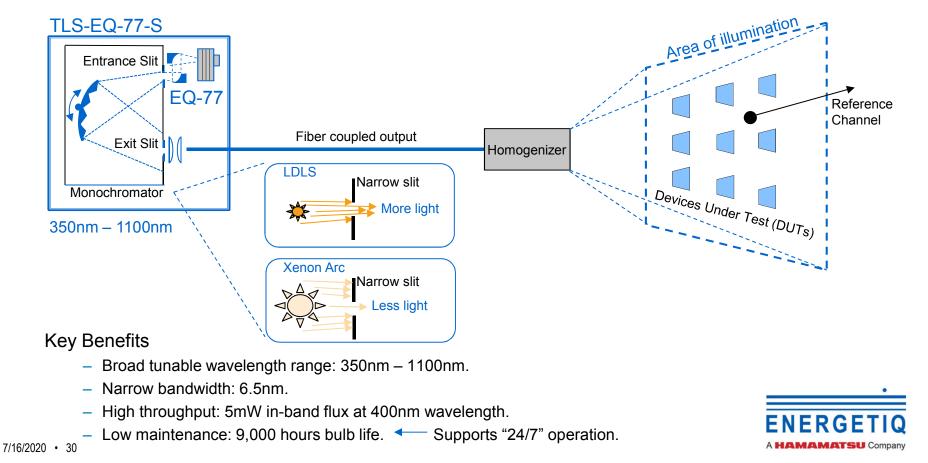
Laser-Driven Light Source™: Principle of Operation

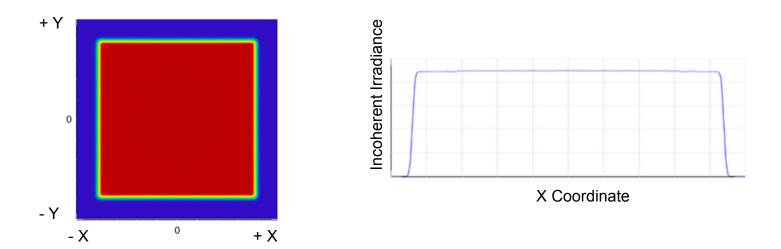
Laser-Driven Light Sources: LDLS™



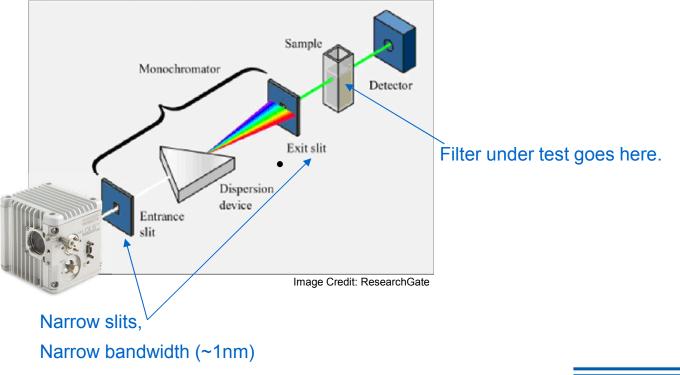
A combination of valuable features in a single broadband source:

- Broad spectrum: 170nm 2400nm.
- High brightness/radiance.
- Long life with high stability.
 - >9,000 hours between bulb changes.
 - Operates 24/7/365 with high reliability.
- Provides upgrade path for customers using. traditional Xe, D₂ & Tungsten Sources.


LDLS Spectral Radiance vs. Traditional Lamps


All measured from 100µm diameter emitting area

Optical Sensor Characterization and Calibration


Homogenizer

High uniformity in terms of irradiance and spectral content.

LIDAR Filter Test

Optical Sensor Test Needs Summary

Sensor Type/Element	Test Requirements	Test Challenges	LDLS benefit
Ambient Light Sensor	Narrow band light (<10nm)	High precision High volume	*** High resolution *** High throughput
LIDAR Filter	Very narrow band light (<1.5nm)	High precision High volume	*** High resolution *** High throughput
Image Sensor	Spectral sensitivity test, Narrow band light (~10nm)	High precision High volume	** High resolution** High throughput
Image Sensor	Spectral properties test, Narrow band light (<50nm)	High precision High volume	* High resolution* High throughput

Please feel free to contact me with questions: Bill Grube wgrube@energetiq.com

Join Us for 10 Weeks of FREE Photonics Webinars (17 Topics)

Week #	Weekly Topics	# of Talks		Talk #2 Date		
1	Introduction to Photodetectors	2	26-May-20	28-May-20		
2	Emerging Applications - LiDAR & Flow Cytometry	2	2-Jun-20	4-Jun-20		
3	Understanding Spectrometer	2	9-Jun-20	11-Jun-20		
1 Weeks Break						
4	Specialty Products – Introduction to Light Sources & X- Ray	2	23-Jun-20	25-Jun-20		
5	Introduction to Image Sensors	2	30-Jun-20	02-Jul-20		
1 Weeks Break						
6	Specialty Products – Laser Driven Light Sources	2	14-Jul-20	16-Jul-20		
7	Image Sensor Circuits and Scientific Camera	2	21-Jul-20	23-Jul-20		
8	Mid-Infrared (MIR) Technologies & Applications	2	28-Jul-20	30-Jul-20		
1 Weeks Break						
9	Photon Counting Detectors – SiPM and SPAD	1	11-Aug-20			
10	Using SNR Simulation to Select a Photodetector	1	18-Aug-20			

•To register for other webinars or hear previous webinar recordings, please visit link below:

•https://www.hamamatsu.com/us/en/news/event/2020/20200526220000.html