

# WEBINAR: X-ray Technology for NDT Applications (Nondestructive Testing)

**Andrew Fay** 

Hamamatsu Corporation Bridgewater, NJ

6.25.2020

T Image Courtesy of North Star Imaging

Andrew Fay is an Application Engineer at Hamamatsu Corporation US HQ in Bridgewater, NJ



© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.



## Agenda

- Intro to X-rays
- Source Tubes

~ 35 minutes

- Detectors
- Applications :
  - Industrial CT
  - Electronics Inspection
  - Food Inspection





## Agenda

- Intro to X-rays
- Source Tubes
- Detectors
- Applications :
  - Industrial CT
  - Electronics Inspection
  - Food Inspection



#### Advancements in X-ray Technology

#### HAMAMATSU



Roentgen 1896

1895 X-rays Discovered

#### Industrial Cone Beam CT 2020



#### X-ray : Properties

- Energy Range: "Soft x-ray" 5-50keV to "Hard x-rays" 150keV 1MeV
- Wavelength: 0.01nm 10nm



#### Principle of X-ray Generation





#### X-rays : tube energy spectrum



Photon spectrum for x-ray tube operating at 150kVp

#### Factors affecting tube output spectrum : Target Material

49

In

24.2

27.3

0.0512

0.455



HAMAMATSU

Factors affecting tube output spectrum : Filters, Tube Potential, Tube Current



Photon spectrum for s-ray tube operating at 150kVp



#### © Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 10

HAMAMATSU

X-rays interact with materials differently



#### Scatter and Sample Material Attenuation Coefficients



© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.



#### Factors for Image Quality: Tube Potential (Voltage kV) Variation

#### Tube Potential (kV) : Defines the intensity of X-ray energy









30kV300uA60kV300uAHigher Tube potential kV gives better material penetration

90kV 300uA

### Factors for Image Quality: Tube Current ( $\mu A$ ) Variation

#### Tube current: Determines the amount of x-ray photons ("Brightness" of image)







#### Factors for Image Quality: Focal Spot Size, Image Sharpness and Magnification

HAMAMATSU





## Agenda

- Intro to X-rays
- Source Tubes
- Detectors
- Applications :
  - Industrial CT
  - Electronics Inspection
  - Food Inspection



Types of X-ray Sources : Conventional / Milli- / Micro- / Nano-



X-ray Source tubes are often characterized by the focal spot :

| Туре              | Focal Spot<br>(Resolution) | Арр                                    | kV           | Res               | Мад      | Config                     |
|-------------------|----------------------------|----------------------------------------|--------------|-------------------|----------|----------------------------|
| Conventional Tube | > 1mm                      | Medical                                | 600kV        | Low               | No       | Sealed Glass or<br>Ceramic |
| Milli-focus Tube  | 0.4 - 1 mm                 | Industrial /<br>Medical                | 600kV        | High              | Not Good | Sealed Glass or<br>Ceramic |
| Micro-focus Tube  | 2–300 μm                   | Industrial CT                          | 30-<br>300kV | Very High         | High     | Sealed or Open             |
| Nano-focus Tube   | 0.25-2 μm                  | High end<br>Industrial /<br>Scientific | 30-<br>300k∨ | Extremely<br>High | High     | Open                       |

Microfocus X-ray Tube = MFX

#### **Reflection Type and Transmission Type**



Small FOD = high magnification

© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.

17

#### HAMAMATSU

#### Sealed and Open-type MFX (Reflection or Transmission)



## Sealed and Open-type MFX (Reflection or Transmission)



### **SEALED TUBE:**

- Typically oil cooled
- Rugged and Compact for 24/7 in-line and off-line inspection.
- Easy to use and integrate.
- Low maintenance.

#### **OPEN TUBE:**

- Target and Cathodes can be changed
- Typically water cooled
- Highest resolution and power achievable.
- Regular maintenance required.

#### Advantage - High Resolution -



To achieve: Stable and quiet environment is required.





## Agenda

- Intro to X-rays
- Source Tubes
- Detectors

## Applications :

- Industrial CT
- Electronics Inspection
- Food Inspection



## NDT Application: Energy Range

#### HAMAMATSU





#### Detectors: Direct vs. Indirect

#### HAMAMATSU PHOTON IS OUR BUSINESS



### **Overview of Detectors : for NDT Applications**







HAMAMATSU PHOTON IS OUR BUSINESS

|                        |                 | Flat Panel    | Line Scan Camera     | Xray Image Intensifier |  |
|------------------------|-----------------|---------------|----------------------|------------------------|--|
| Energy Range           |                 | Good          | Good                 | 300kV                  |  |
| Resolution             |                 | <b>50</b> μm  | <b>48</b> μ <b>m</b> | Good                   |  |
| Size (active area)     |                 | Up to 43x43cm | Good                 | Good                   |  |
| Speed                  |                 | Better        | Best                 | Good                   |  |
| Low Dose Performance   |                 | Good          | Better               | Best                   |  |
| Ease of Use/ Interface |                 | Good          | Good                 | Good                   |  |
| Application:           | Food Inspection |               | $\checkmark$         |                        |  |
|                        | Industrial CT   | $\checkmark$  | $\checkmark$         | $\checkmark$           |  |
| Electronics Inspection |                 | $\checkmark$  | $\checkmark$         | $\checkmark$           |  |



## Flat-Panel Sensors (FPS)





#### Intro to Scintillator and Deposition Types

Scintillator Material (Converts x-ray to light photon)

**Csl Scintillator** 

- Needle Structure for High Resolution
- Deposition applicable

**Scintillator Deposition or Coupling Methods:** 

1) "Flipped" Scintillator Plate Type: cost effective

2) "Direct Deposition" Type: eliminate light scattering on the contact surface and maintain better resolution





Copyright C Hamamatsu Photonics K.K. All Rights Reserved.



#### **Compare CMOS and a-Si Flat-Panel**



Copyright C Hamamatsu Photonics K.K. All Rights Reserved.

| CMOS vs. a-Si        |               | A            | PHOTON IS OUR BUSINESS                      |  |  |
|----------------------|---------------|--------------|---------------------------------------------|--|--|
|                      |               |              | Currently Only CMOS offered for NDT         |  |  |
| Attribute            | CMOS          | A-Si         |                                             |  |  |
| Radiation Hardness   |               | $\checkmark$ |                                             |  |  |
| Cost                 | $\checkmark$  | $\checkmark$ | TFT on Glass Substrate vs.<br>Silicon Wafer |  |  |
| Detector Size        | 30x30cm       | √43x43cm     |                                             |  |  |
| Pixel Size           | <b>√</b> 50μm | 100µm        |                                             |  |  |
| Noise                | $\checkmark$  |              |                                             |  |  |
| Speed                | $\checkmark$  |              | Higher Charge Mobility in                   |  |  |
| Dynamic Range        | $\checkmark$  |              |                                             |  |  |
| Low Dose / High Dose | <b>√</b> /    | / 🗸          |                                             |  |  |



# Line Scan Cameras (LSC)



Basic configuration of X-ray inspection system

Confidential

General system consist of...

- X-ray camera (LSC)
- Milli- or micro- X-ray source
- Conveyers
- Shielding box
- PC
- Software



Copyright C Hamamatsu Photonics K.K. All Rights Reserved.



### Line Scan Camera Types



Copyright C Hamamatsu Photonics K.K. All Rights Reserved.

More on Dual-Energy and TDI

#### Confidential

ON IS OUR BUS

## Dual-Energy



## **TDI (Time Delay Integration)**

## Schematic diagram showing integrated exposure by TDI mode



- Improved sensitivity by x # lines
- SNR improved by /# lines

### LSC - Applications

#### HAMAMATSU





X-ray Image Intensifier (XRII)



X-ray Image Intensifier

## **Operations in an X-ray image chain**



#### X-ray Image Intensifier + CMOS Camera

#### HAMAMATSU PHOTON IS OUR BUSINESS





## Agenda

- X-ray Introduction
- Source Tubes
- Detectors
- Applications :
  - Industrial CT
  - Electronics Inspection
  - Food Inspection





38

#### Industrial CT Application : Image Quality – Magnification

Magnification allows the defect to be projected onto more pixels at the detector. Therefore better detectability.

MFX will allow good magnification of a sample/part onto the FPS:

- High Magnification
- Micro focus reduces Unsharpness
- Increases # pixels representing the sample

Flaw Detectability of System is increased.

HAMAMATSU PHOTON IS OUR BUSINES!

#### Industrial CT Application : Image Quality – Frame Averaging

Random Noise intensity fluctuations can be reduced.

Noise drops by 1/the square root of the number of frames averaged.



HAMAMATSU

Industrial CT Application : Image Quality – **Optimizing SNR** 

Optimizing SNR is a balance of Signal Increase and Noise Reduction.

- 1. Confirm sample penetration, adjusting Tube Potential kV.
- 2. Add beam **FILTER** to remove unwanted low energy x-rays.
- 3. Collimate output of source tube to reduce scatter.
- For given kV (i.e. part material density or desired penetration), drive signal as high as possible adjust Tube Current, and/or reducing geometric focal distance (Dose drops/increases by inverse square of the distance).
- 5. Adjust FPS frame rate and frame averaging.



## Agenda

- X-ray Introduction
- Source Tubes
- Detectors
- Applications :
  - Industrial CT
  - Electronics Inspection
  - Food Inspection



Electronic Inspection Application : Sample Dose and Magnification

HAMAMATSU



#### Electronic Inspection Application : Sample Dose and Detector

HAMAMATSU

**Bidirectional Scanning** 

Focused fan beam onto small detector area





## Agenda

- Intro to X-rays
- Source Tubes
- Detectors

# Applications :

- Industrial CT
- Electronics Inspection
- Food Inspection



#### **Food Inspection Applications**



Hash brown potatoes



#### Food Inspection Applications - Detectability

#### Dual-Looking For: Inside of: LSC Need: TDI Energy Quality and Safety Check General Good **High Speed** BEST Good Organic Materials (Glass, Bone, **Homogeneous Dynamic** Mineral Stone) or BEST Good Good (Yogurt, Butter) Range High Density Plastic/Rubber Organic Materials (Glass, Bone, Heterogeneous Material Mineral Stone. (Bag Hard Candy, Good **Better** BEST Differentiation Mixed Nuts) Low Density Plastic/Rubber Resolution Complex **Contaminants** Good BEST BEST and Material Packaging Differentiation High Small Voids **Sealed Package Better** Good BEST Resolution

#### HAMAMATSU PHOTON IS OUR BUSINESS

© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 47

#### Food Inspection Application - Where

#### HAMAMATSU



#### References

ISSN 1097-0002, Advances in X-ray Analysis, Volume 41 Spectral distribution from end window X-ray tubes N. Broll1, P. de Chateaubourg2 1 FORTEX - E.N.S.A.I.S
International Atomic Energy Agency, Diagnostic Radiology Physics 2014 Dance, Christofides, Maidment, McLean, Ng.
North Star Imaging, Digital Radiograhpy & Computed Tomography Level 1, 2019 Muehlhauser, Price, Lemmer, et al
Pinnacle X-ray Solutions Inc / ASNT, Metal 3D Printing and Understanding Resolution with CT Scanning, 2020 Gormley
American Society for Nondestructive Testing, Nondestructive Testing Handbook, volume 4, 2002 Bossi, Iddings, Wheeler
World Scientific, River Edge, The Elementary Process of Bremsstralung, 2004 Haug, Nakel

#### Join Us for 10 Weeks of FREE Photonics Webinars (17 Topics)

| Week # | Weekly Topics                                              | # of Talks | Talk #1 Date | Talk #2 Date |
|--------|------------------------------------------------------------|------------|--------------|--------------|
| 1      | Introduction to Photodetectors                             | 2          | 26-May-20    | 28-May-20    |
| 2      | Emerging Applications - LiDAR & Flow Cytometry             | 2          | 2-Jun-20     | 4-Jun-20     |
| 3      | Understanding Spectrometer                                 | 2          | 9-Jun-20     | 11-Jun-20    |
|        | 1 Weeks Break                                              |            | -            |              |
| 4      | Specialty Products – Introduction to Light Sources & X-Ray | 2          | 23-Jun-20    | 25-Jun-20    |
| 5      | Introduction to Image Sensors                              | 2          | 30-Jun-20    | 02-Jul-20    |
|        | 1 Weeks Break                                              |            | _            |              |
| 6      | Specialty Products – Laser Driven Light Sources            | 2          | 14-Jul-20    | 16-Jul-20    |
| 7      | Image Sensor Circuits and Scientific Camera                | 2          | 21-Jul-20    | 23-Jul-20    |
| 8      | Mid-Infrared (MIR) Technologies & Applications             | 2          | 28-Jul-20    | 30-Jul-20    |
|        | 1 Weeks Break                                              |            | _            |              |
| 9      | Photon Counting Detectors – SiPM and SPAD                  | 1          | 11-Aug-20    |              |
| 10     | Using SNR Simulation to Select a Photodetector             | 1          | 18-Aug-20    |              |

To register and attend other webinar series, please visit link below: https://www.hamamatsu.com/us/en/news/event/2020/20200526220000.html

50





## www.hamamatsu.com

CT Image Courtesy of North Star Imaging