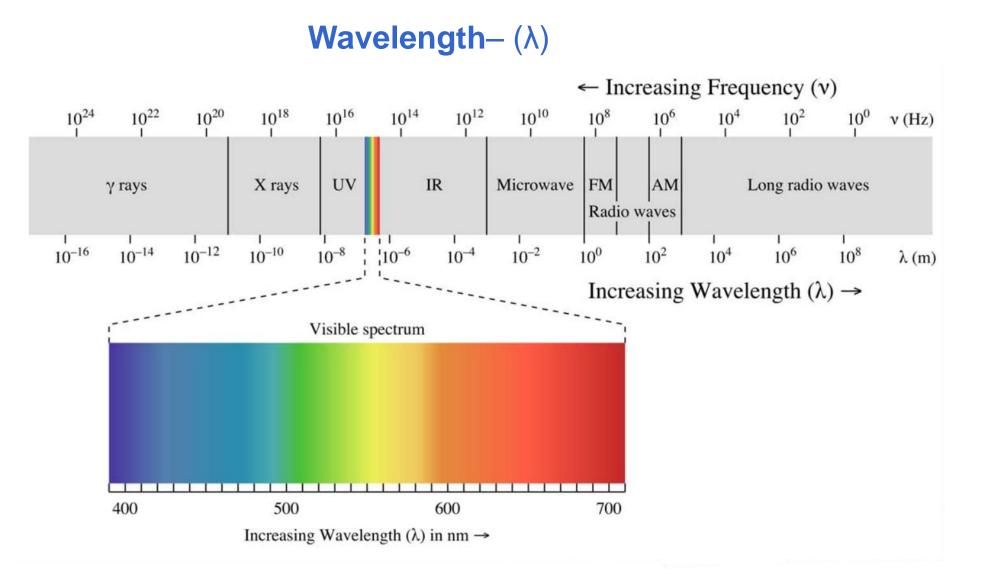


An Encounter with Light Generating Devices

Eric Mesa

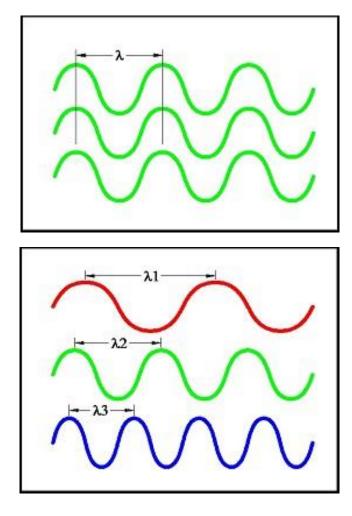
Hamamatsu Corporation

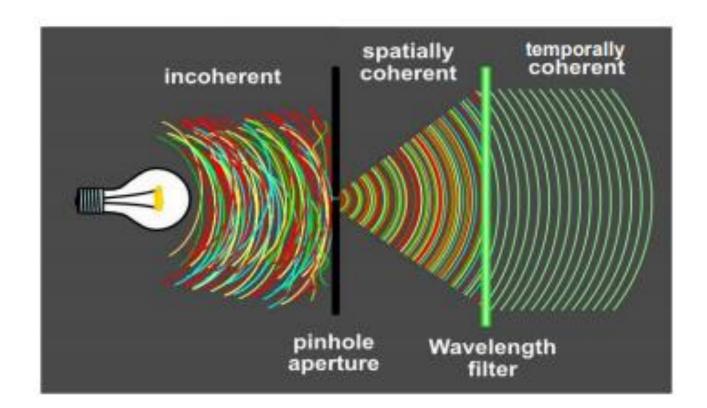
06/23/2020



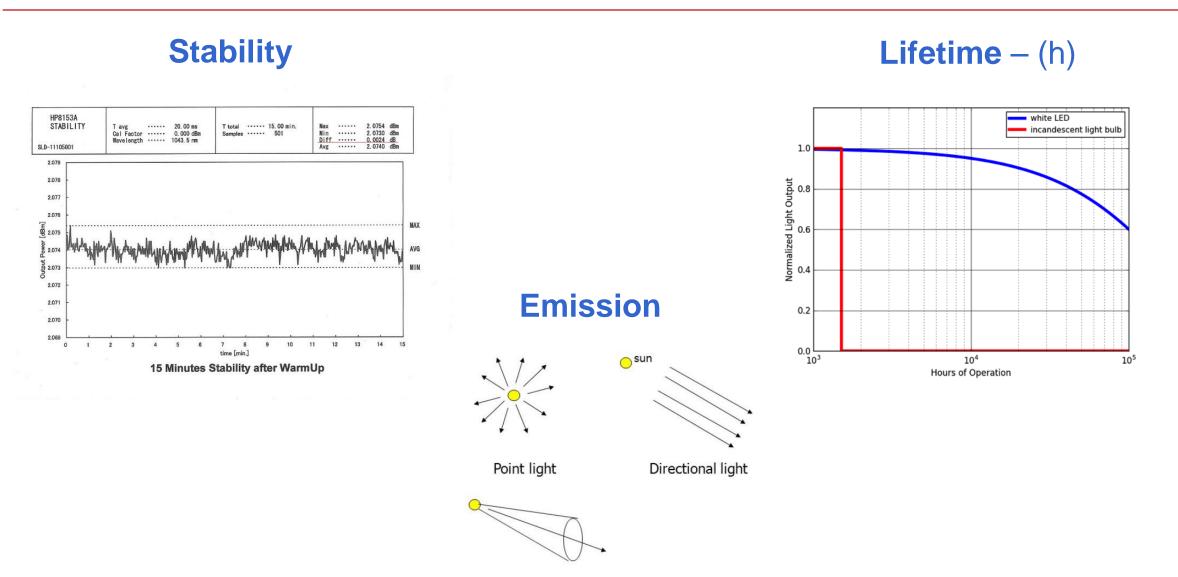
Outline

- Light Source Terminology
- Thermal/Black Body Sources
- Discharge Sources
- Specialty Sources
- Light Source Summary/Conclusion

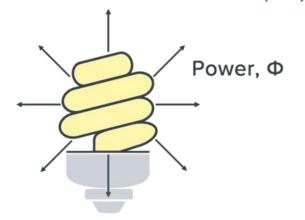




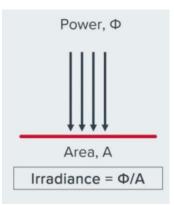
HAMAMATSU PHOTON IS OUR BUSINESS


Coherence (temporal, spatial)

Light Source Terminology

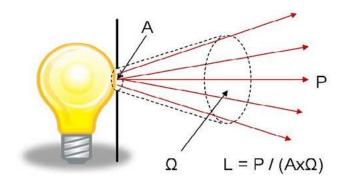


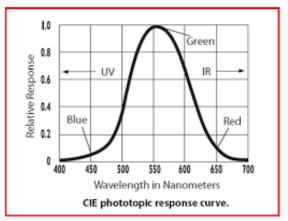
Spot light


Light Source Terminology

HAMAMATSU PHOTON IS OUR BUSINESS

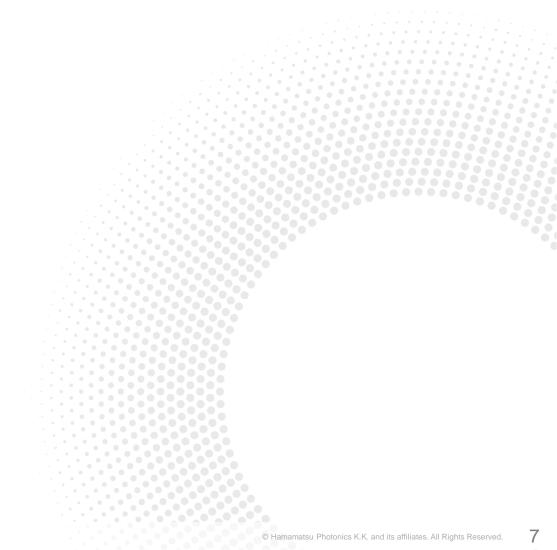
Radiant Flux/Power – (W).

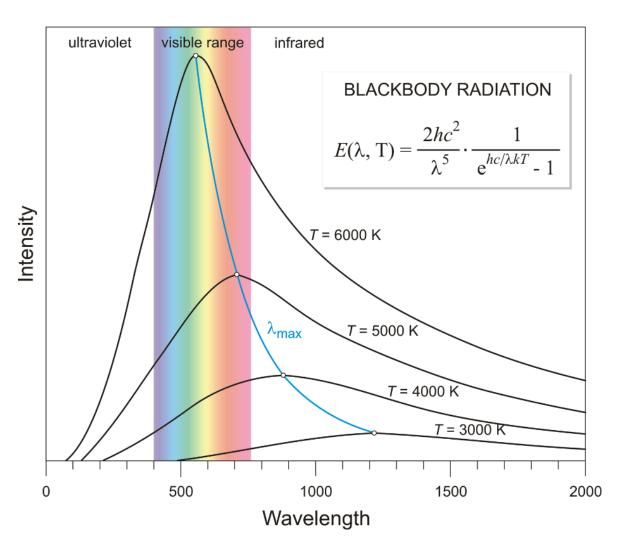




Luminous Flux – (Im)

Spectral Radiance (brightness) – (W/m2-sr)

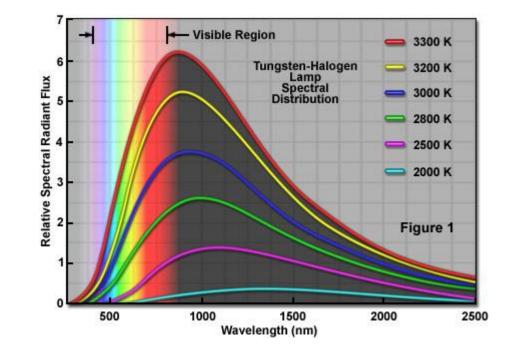

Luminous flux = Radiant power (watts) x 683 lumens/watt x luminous efficacy


Thermal Light Sources

Thermal Light Sources – Principle of Operation

- Black body radiation from a heated filament
- Filament temperature black body output
- No source is a perfect black body
- Temperature calibrations

- Smooth optical spectrum
- Incoherent light
- Low efficiency
- Low UV Output
- Typ. luminous efficiency on the order of 15 lm/W
- Lifetimes on the order of 1000s of hours
- Relatively low cost



- Thermal light sources are purely resistive loads.
 Fairly simple for operation
- Electrical resistance increases with higher temperatures
- Resistance is lower during start-up which results in a high initial warm-up current
- Thermal light sources are not suited for fast switching or fast pulsed operation. Pulsing will degrade the filament faster

- Electrically heated filaments are made from Tungsten.
- **Tungsten-Halogen**, bulb filled with a Halogen gas mixture
- Low efficiency
- Widely used for general purpose lighting, but also scientific applications in broadband spectroscopy, microscopy, and as well as general imaging

Feature

High Operating Temperature

Resistive Load

Smooth Black Body Radiation Spectrum


- **Application Benefit**
- More light in visible spectrum
- Simple operating circuitry
- No sharp peaks or dips

Low long term output decay (Tungsten-Halogen) > Consistent output over time

Microscope Illumination

- Default Illumination source for most teaching/research level microscopes
- High Intensity, broadband, visible light
- Good for long term experiments due to stable temporal and spatial output fluctuation

- The **Globar** source uses a Silicon Carbide rod as a heating element, instead of Tungsten
- Lower black body temperature shifts the peak emission into IR.
- Commonly used as broadband IR source for Infrared spectroscopy

Feature

Application Benefit

- Lower Relative Operating Temp
- Large relative filament size
- No pressurized bulb
- Low long term output decay

- Peak output is in NIR
- Larger area of emission
- Safer handling
- Consistent output over time
- Smooth Black Body Radiation Spectrum > No sharp peaks or dips

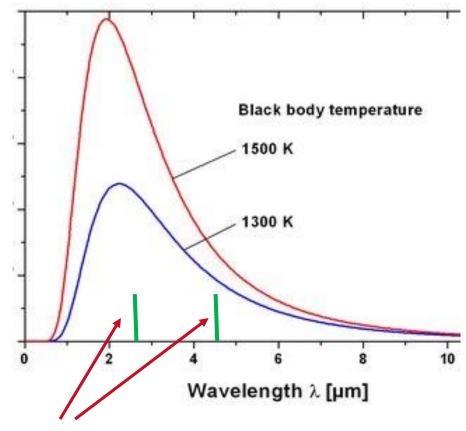
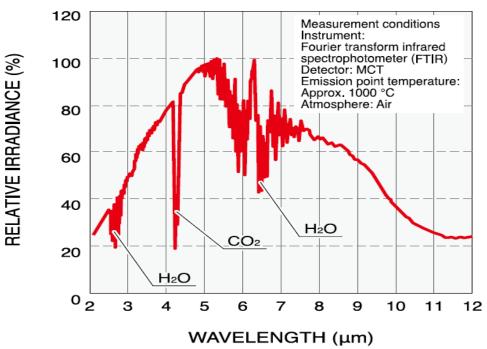


Figure 2 A Silicon Carbide Globar

FTIR Spectroscopy

- FTIR spectroscopy identifies organic (in some cases inorganic) material by measuring absorption of IR light
- Key IR absorption bands identify the specific molecular components and structures
- Globars have broad, smooth, continuous spectrum which provides coverage across various absorption bands
- Information collected from multiple absorption bands provides higher measurement accuracy.



CO2 absorption bands

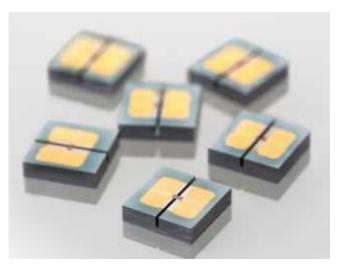
- Graphene emitters are a compact IR thermal light source
- Smaller, brighter
- Operates at 1200K
- Fast pulsing operation, 3kHz
- Vacuum confined filament

SPECTRAL DISTRIBUTION (Typ.)

Feature Application Benefit

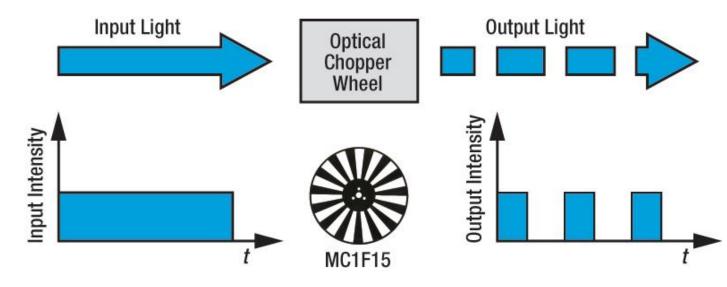
Small Thermal Capacity

Small form factor


Fast Pulsing Operation

Integration into portable systems

Smooth Black Body Radiation Spectrum > No sharp peaks or dips


Lower Relative Operating Temp

Peak output is in NIR

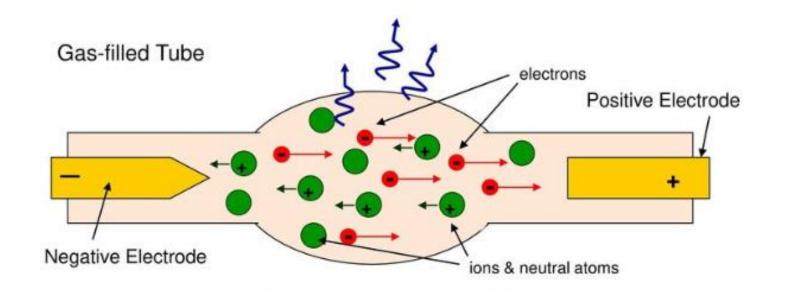
Pulsed Source

- Optical "chopping" is a technique used to increase SNR when pair with a lock-in amp
- Mechanical choppers can produce mechanical vibrations and truncated beams
- Ability to pulse the light source eliminates need for mechanical element

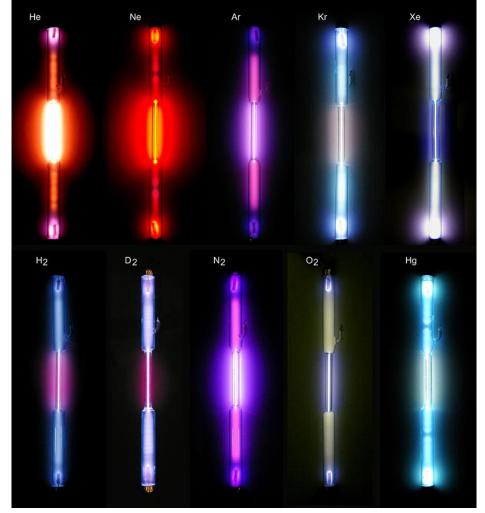
Thermal Light Sources – Key Takeaways

	Tungsten	Globar	Graphene
Advantages	 Low Cost Smooth broadband output spectrum Low long term output decay 	 Long lifetime Broad NIR Spectrum Smooth output spectrum Atmospheric operation 	 Compact form factor Fast pulsing operation Broad NIR Spectrum
Disadvantages	 High bulb pressure Low UV output Low efficiency Cannot be pulsed 	 Typically requires water cooling jacket Low UV output Low efficiency Cannot be pulsed 	 Low relative intensity Small emission area Low UV output
Applications	 Broadband Spectroscopy Calibration source General purpose lighting 	 FTIR spectroscopy Can be used as a heating element 	FTIR spectroscopy

20

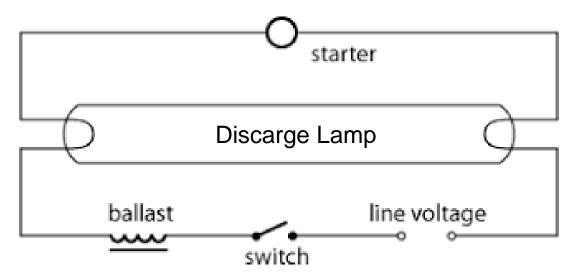


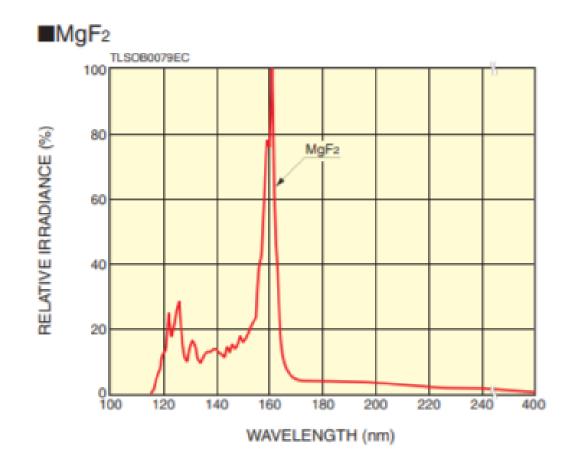
Gas Discharge Sources


© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 21

- High electric field induces ionization, gas becomes conductive
- Ionized gas particles form light emitting plasma
- Light is emitted by downward electronic transitions in gas atoms
- A gas atom's orbitals differ by specific energies, and these differences determine the emitted photon energies or wavelengths.

- Luminous efficacy is higher than thermal light sources, on order of 50-150 lm/W
- Incoherent light
- Startup time can range from a few secs to mins
- Lifetime is on the order of 2000-4000 hours for deuterium and xenon lamps
- Xenon flash lamps can reach up to 1 billion flashes





- Impedance of the discharge lamp depends on the amount of ionization inside lamp
- A high trigger voltage must be used to induce the gas ionization within the lamp.
 This requires more complex start-up circuitry (Starter + power supply)
- Once ionization is triggered, impedance decreases and ionization is sustained by the increasing lamp current.

Deuterium Lamps are a type of low pressure gas discharge lamp that use deuterium gas.
 They are UV light sources well known for their high stability (0.005% peak to peak).

- 115nm to 400nm Emission
- 2000 ~ 4000h Lifetime
- Point light source

Feature

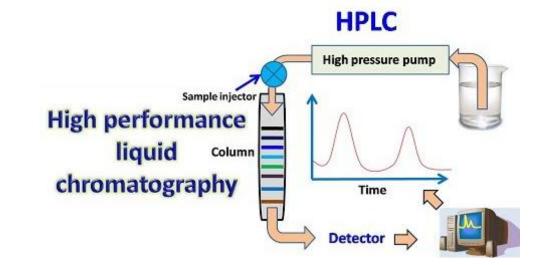
Application Benefit

High stability (0.005% peak to peak)

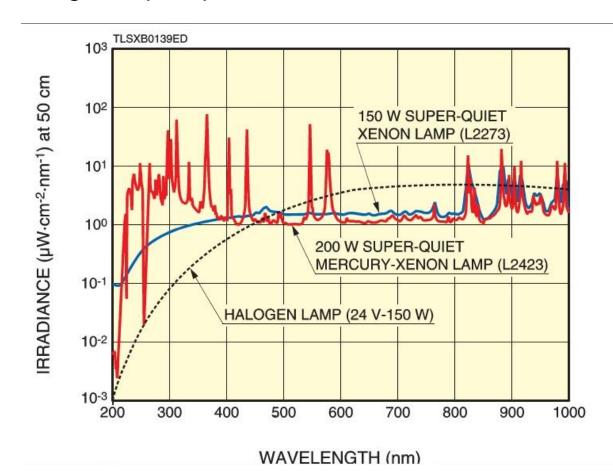
High energy UV output

Limited only to UV output

- High accuracy measurement
- > Ability to ionize molecules
- No need to filter VIS or IR


Deuterium Lamp Applications

- High Performance Liquid
 Chromatography (HPLC) : High intensity,
 High stability
- UV-VIS spectrophotometers
- Semiconductor Inspection
- Film Thickness Measurement
- Electrostatic Remover: VUV output



High Performance Liquid Chromatography

- Technique used to separate and analyze individual components of a mixture
- Usually to confirm/check purity of the mixtures
- Dealing with very small particles/sample sizes, absorption is low
- Low output variation of D2 lamps allows for high precision absorption measurement

Xenon and Mercury Xenon Lamps are high pressure gas discharge lamps (10-20 atm) emitting multiple spectral features from UV to NIR.

- Small region of emission
- •High luminance, high radiance output
- •Emission Spectrum (185nm to 2000nm)
- •Wide range of applications

Feature

Application Benefit

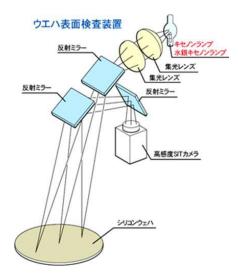
Distinct Xenon or Hg emission peaks > High intensity at these peaks

High color temperature (6000K)

Point source with high radiance

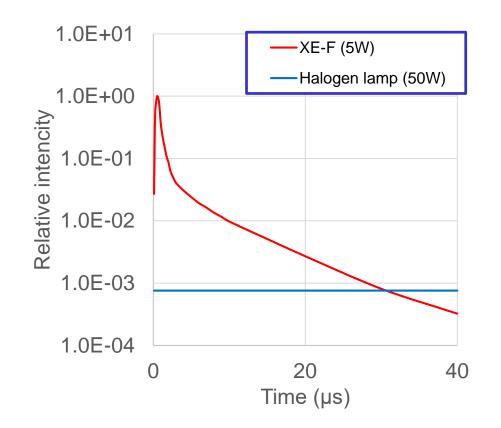
Broad UV to NIR output

- Can simulate solar spectrum
- Produce high intensity collimated beam
- Various wavelengths of interaction/metrology



Xe/HgXe Lamp Applications

- Wafer Inspection System
- UV Curing System
- Fluorescence Spectrophotometer
- Air Pollution Analyzer



UV Curing

- UV light initiates a photochemical reaction to cure or "dry" inks, coatings, or adhesives
- Photo chemical reactions are initiated by specific wavelengths of interaction
- UV spectral lines correspond with wavelength of interaction of many UV curable coatings.
- High intensity of Mercury-Xenon allows for short exposure/faster curing

Xenon Flash Lamps are xenon gas discharge lamps emitting a broad spectrum of light from UV and going into NIR.

- Short warm up time
- Pulsed, high-intensity light
- Features a small size, and low heat build-up due to pulsed operation

Feature

Application Benefit

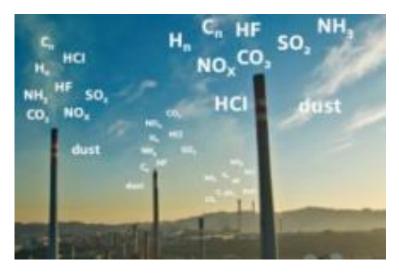
High peak irradiance per pulse

Pulsed operation

Low heat build-up

Short warm up time

- Delivers many photons in short burst
- Can synchronize output with exposure time
- Easier integration into enclosures
- Minimize delay in taking measurements



Xenon Flash Lamp Applications

- UV-VIS Spectrophotometer
- Gas Monitoring
- Water Quality Monitoring
- Blood Analysis

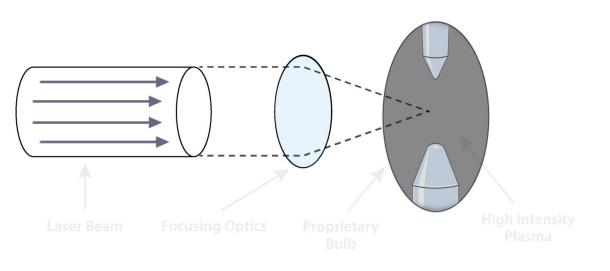
Spectrophotometry Instruments

- Spectrophotometers have wide uses in chemistry and biology for reflectance and transmission measurements of samples
- Typically measurement is desired for various wavelengths of interaction
- Needs to be plug and play for in lab use
- XeF flash lamp broad spectral features provides multiple wavelengths of interaction
- Small form factor allows easy integration in to bench top units.
- Low heat simplifies design and is also non-destructive

	Deuterium Lamps 🛛 📰	Xe/HgXe	Xe Flash Lamps 🛛 🕄 🔍
Advantages	High Stability (0.005%)	Broad UV to NIR Output	Broad UV-NIR Output
	Broad UV output	High stability	Pulsed output
		High Color Temp (6000K)	Short warm-up time
			High peak irradiance
			Low heat generation
Disadvantages	20-30 min warm up time	Cathode erosion leads to	Lower relative stability
	Stable power source required	long term drop in output	More complex operating
	Stability is highly depended on	Several minute warm-up time	e circuitry
	bulb temperature	High heat generation	
Applications	> HPLC	Wafer Inspection System	UV-VIS Spectrophotometer
	Semiconductor Inspection	UV Curing System	Gas Monitoring
	Film Thickness Measurement	Fluorescence	Water Quality Monitoring
	Electrostatic Removal	Spectrophotometer	Blood Analysis
		Air Pollution Analyzer	

© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 37

Specialty Sources


© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 38

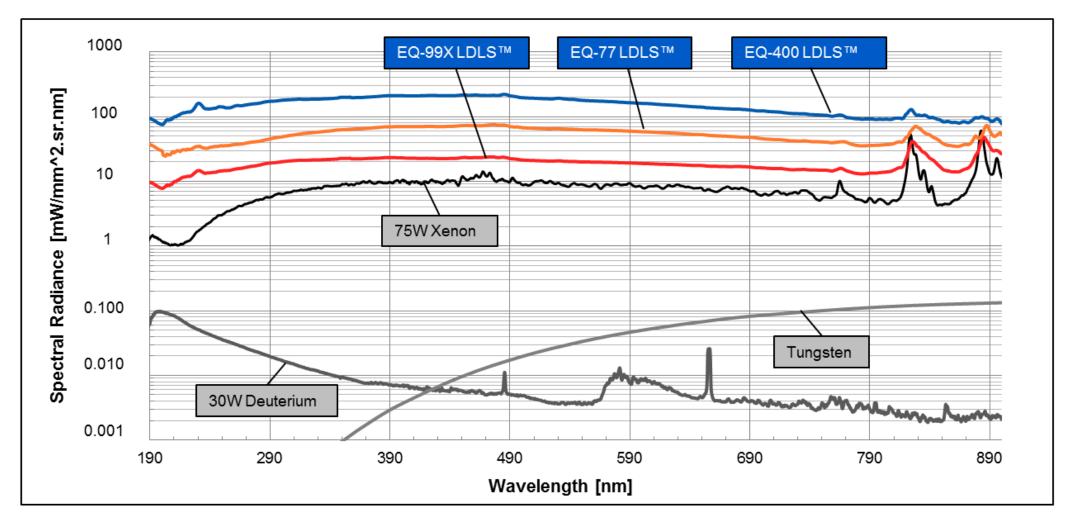
The Laser Driven Light Source[™] is a more recent variation of traditional pressurized xenon arc lamps. The key difference is the plasma of this specialized xenon bulb is only just initially generated by the electrodes. Then light emitting plasma is then sustained by a high power laser.

Principle of Operation

Laser-Driven Light Source (LDLS[™])

- High brightness: ~100µm diameter Xenon plasma
- Efficient coupling into small fibers or spectrometer slits
- Point source enables collimation over long distances
- Incoherent light

Laser Drive Light Source - Characteristics


- The LDLS has long lifetime due to low wear electrode wear, ~10,000 hours
- High brightness
- Efficient for small spot size illumination
- UV-VIS-NIR output
- Point Source
- Applications:
 - Semiconductor Wafer Inspection
 - Thin Film Measurement
 - Color Analysis
 - Filter/Optics Testing

Laser Driven Light Source

Radiance (brightness) comparison

Feature Ap

Application Benefit

High Brightness from small spot

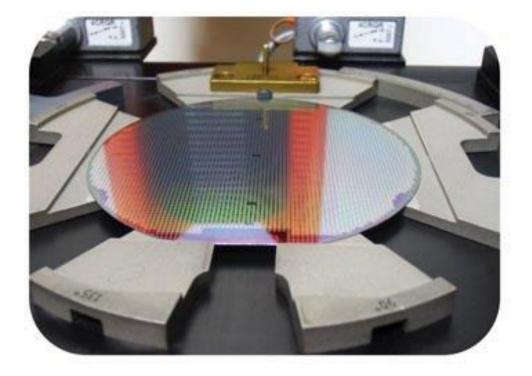
Long Life

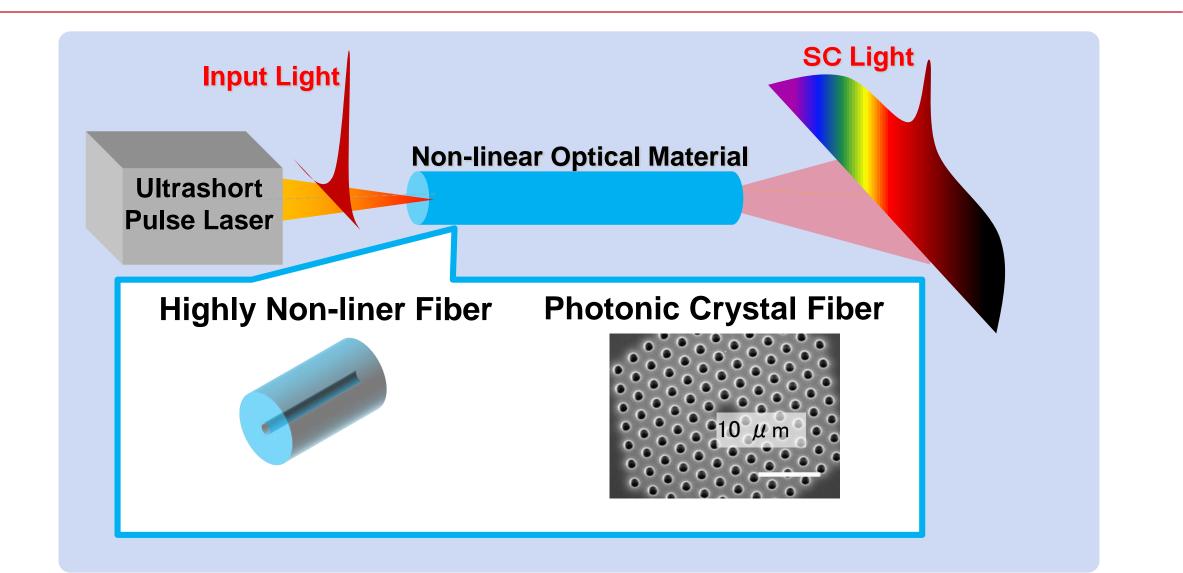
Broad UV-VIS-NIR Output

Full system

High Relative Spatial Stability

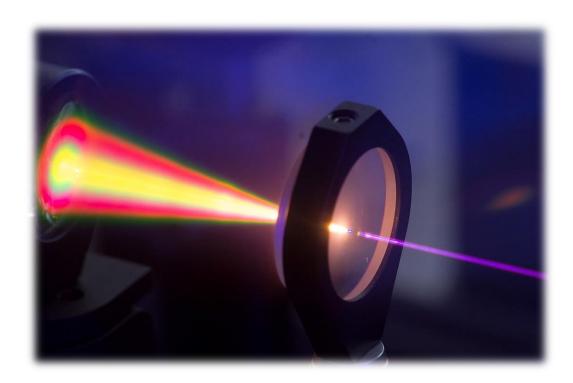
Couple into small fiber or aperture


- Long uptime, minimize maintenance cost
- Various wavelengths of interaction/metrology
- Easy to integrate/use
- Stable/consistent light coupling

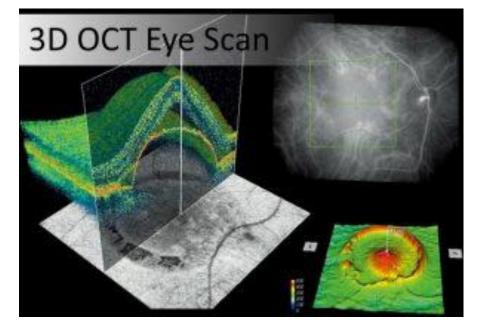

PHOTON IS OUR BUSINESS

Semiconductor Inspection

- Increasing miniaturization of electronics = smaller features/small field of view for inspection
- Uptime is extremely important
- Smaller, brighter, plasma couples a lot of light into small spot
- This enables detection of small features as well as faster measurements
- Long life reduces downtime for maintenance



Supercontinuum light generation varies based on a number of factors:


- Chromatic dispersion of fiber or nonlinear medium
- Length of fiber or nonlinear medium
- Pump source pulse duration
- Pump source peak power
- Pump source wavelength

Optical Characterisitcs

- Spatial coherence is usually very high
- Low temporal coherence (broadband output)
- Spectral output range of supercontinuum generated light varies based on design.
 Can range anywhere from VIS into NIR.
- Applications: Optical Coherence Tomography, Fluorescence Microscopy

Feature

High Spatial Coherence/Low Temporal Coherence

High Relative Stability

Broadband

High brightness (10um fiber)

Application Benefit

- Advantageous interferometric properties
- More accurate measurement

- Various wavelengths of interaction/metrology
- Provides broadband laser level output

	Laser Driven Light Source	Super Continuum Light Source
Advantages	 High Brightness from small spot Broadband Output Low electrode wear/long life-time High spatial stability 	 High Brightness, laser level output Broadband NIR High Spatial Coherence
Disadvantages	 Relatively low total radiant flux Not compact 	 High Cost Not compact
Applications	 Semiconductor Inspection Film Thickness Measurement Senser Testing (Characterization) 	 Optical Coherence Tomography NIR Spectroscopy
	 Sensor Testing/Characterization Broadband Spectroscopy 	

Founded in March 2004

Wholly Owned Subsidiary of Hamamatsu - Energetiq joined Hamamatsu in October 2017

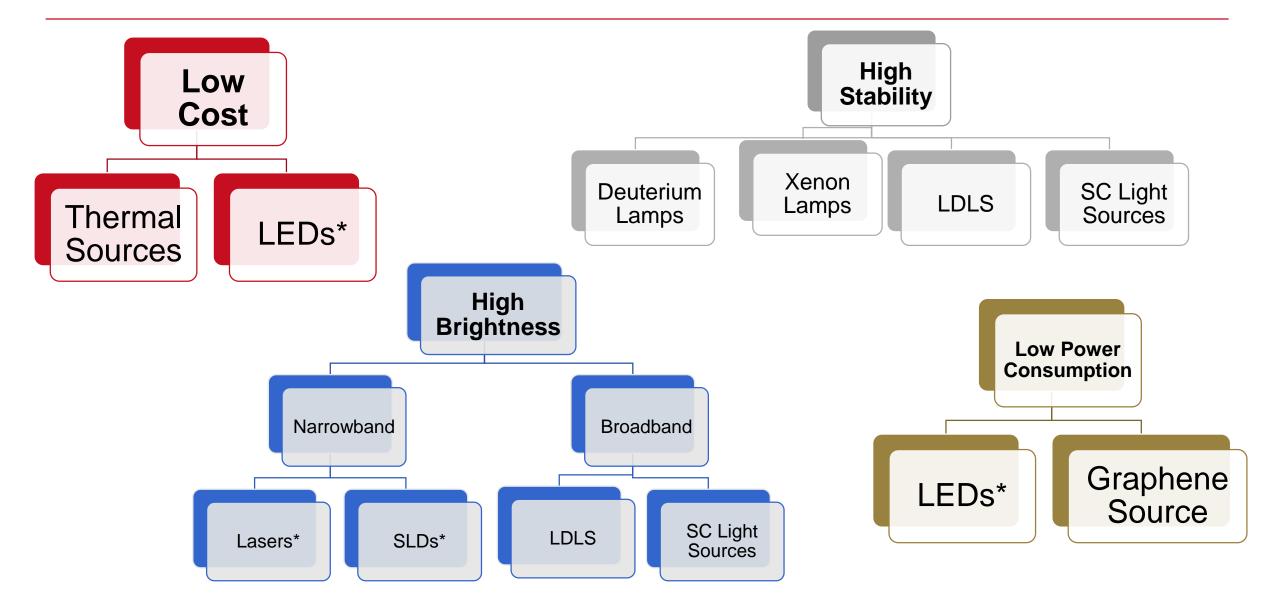
Based in Wilmington, MA 01887 USA

Upcoming Webinars:

July 14th - Extreme Ultraviolet Light Sources Supporting Nextgeneration Lithography

July 16th – Advances in Testing and Calibration of Modern Optical Sensors

Laser-Driven Light Sources: LDLS™



Summary

50 © Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.

Summary and Conclusions

	Tungsten Halogen	Globar	Graphene	D2 Lamp	Xenon Flash	Xe lamp		SC
Wavelength range (nm)	200 – 3000nm	500 – 9000nm	1000-7000nm	115-400nm	185-2500nm	185-2000nm	170-2400nm	1300-2000nm
Stability(%)	±0.3%	±0.05%	-	±.005%	±2%	±0.1%	±0.2%	±0.1%
Relative Intensity (mW*cm ^{-2*} nm ⁻¹)	20x	100x	-	1x	1000x	~10x	~100x	~10000x
Lifetime	1000h	10000h	2000h	~2000- 4000h	~1 Billion Flashes	~2000- 4000h	~10000h	over 3000h
Relative Cost	1x	20x	2x	10x	20x	20x	500x	500x

Contact Us

We'd like to hear from you

- Light source selection questions
- Ideal light source characteristics
- New applications

https://www.hamamatsu.com

Join Us for 10 Weeks of FREE Photonics Webinars (17 Topics)

•••••						
Weekly Topics		Talk #1 Date	Talk #2 Date			
Introduction to Photodetectors		26-May-20	28-May-20			
Emerging Applications - LiDAR & Flow Cytometry		2-Jun-20	4-Jun-20			
ing Spectrometer	2	9-Jun-20	11-Jun-20			
1 Weeks Break						
luction to Light Sources & X-Ray	2	23-Jun-20	25-Jun-20			
to Image Sensors	2	30-Jun-20	02-Jul-20			
1 Weeks Break						
Laser Driven Light Sources	2	14-Jul-20	16-Jul-20			
its and Scientific Camera	2	21-Jul-20	23-Jul-20			
chnologies & Applications	2	28-Jul-20	30-Jul-20			
1 Weeks Break						
etectors – SiPM and SPAD	1	11-Aug-20				
to Select a Photodetector	1	18-Aug-20				
	to Photodetectors s - LiDAR & Flow Cytometry ling Spectrometer 1 Weeks Break duction to Light Sources & X-Ray 1 Weeks Break 1 Weeks Break Laser Driven Light Sources its and Scientific Camera echnologies & Applications	to Photodetectors2s - LiDAR & Flow Cytometry2ling Spectrometer21 Weeks Break2duction to Light Sources & X-Ray2a to Image Sensors21 Weeks Break21 Weeks Break2ser Driven Light Sources2a to Scientific Camera2echnologies & Applications21 Weeks Break21 Weeks Break21 Weeks Break1	to Photodetectors226-May-20s - LiDAR & Flow Cytometry22-Jun-20ling Spectrometer29-Jun-201 Weeks Break1duction to Light Sources & X-Ray223-Jun-201 Weeks Break230-Jun-201 Weeks Break30-Jun-201 Weeks Break214-Jul-201 Weeks Break221-Jul-20its and Scientific Camera221-Jul-20echnologies & Applications228-Jul-201 Weeks Break228-Jul-201 Weeks Break228-Jul-201 Weeks Break111-Aug-20			

To register and attend other webinar series, please visit link below: https://www.hamamatsu.com/us/en/news/event/2020/20200526220000.html

References

https://www.energetiq.com/technote-understanding-radiance-brightness-irradiance-radiant-flux https://www.bentham.co.uk/knowledge/tools-resources/technical-notes/measurement-of-spectral-irradiance-152/ http://bazar.balzer-photography.com/uv-vis-spectroscopy/ https://www.bentham.co.uk/knowledge/tools-resources/technical-notes/measurement-of-spectral-radiant-flux-165/ https://www.fiberlabs.com/sld_light_source/sld-1050-01/ https://images.slideplayer.com/18/5684167/slides/slide_7.jpg https://www.lumileds.com/technology/luxeon-technology/lumen-maintenance-and-reliability https://www.semanticscholar.org/paper/Design-of-electronic-ballast-for-short-arc-xenon-Chang-Yang/93c3a1f35e605b357606cf99def238e567fec24a/figure/2 https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7269&pn=SLS203L https://www.ledwatcher.com/high-intensity-discharge-lamps-explained/ https://my.vanderbilt.edu/sced3890pedagogy/page/6/ https://en.wikipedia.org/wiki/Supercontinuum https://www.rp-photonics.com/incandescent lamps.html https://www.rp-photonics.com/gas_discharge_lamps.html https://www.rp-photonics.com/supercontinuum_generation.html?s=ak http://www.jbopticians.co.uk/eye_care/emergency-appointments/index.html https://commons.wikimedia.org/wiki/File:Electric_bulb_filament.jpg https://www.brighthubengineering.com/commercial-electrical-applications/72920-electrical-circuit-theory-and-network-theorems/ http://laserboyfriend.blogspot.com/2012/09/lightbulbs-and-lumen.html https://slideplayer.com/slide/12699519/ https://www.bhphotovideo.com/c/product/1152573-REG/sylvania_osram_58849_tungsten_halogen_single_ended_lamp.html http://users.ntua.gr/eglytsis/OptEng/Coherence_p.pdf

www.hamamatsu.com