

Using SNR Simulation to Select a Photodetector

Dino Butron

Marketing Department Hamamatsu Corporation

August 2020

© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.

SNR as a Figure of Merit for Product Selection

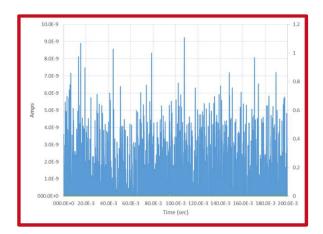
The Challenge of Selecting a Detetor

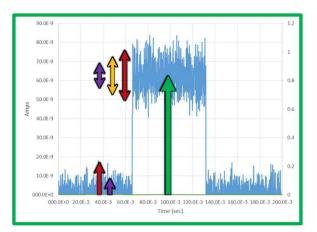
Photodiode APDs MPPC PMT **Quantum Efficiency** 10 - 20% (QE_{eff}) 80 - 90% 80 - 90% 25 - 50% (PDE) <100 10⁵~10⁶ ~106 1 **Excess Noise Factor** 1 ~4 ~1.05 ~1.2 Up to 1200 nm (Silicon) Up to 1150 nm (Silicon) 320 to 900 nm 190 to 900 nm **Spectral Range** Up to 2.6 um (InGaAs) Up to 1700 nm (InGaAs) (Peak 450-470 nm) Limited by number of Limited by amplifier Dynamic Range Limited by amplifier Limited by divider current microcells рW fW fW nW Severly limited by readout Limited by readout Limited by dark noise Limit of Detection Limited by dark noise noise ~ 500 cps (Quiet) noise ~ 100,000 cps (Noisy) **Bias Voltage** ~200 V ~ 50 V ~ 1000 V 2 Mechanical Robustness Rugged Rugged Rugged Good **Magnetic Field** Immune Immune Immune **Need protection** Signal integrity & temperature **Design Complexity** Signal integrity Temperature compensation High voltage compensation Can be damaged **Ambient Light Exposure** No damage No damage No damage Medium **Temperature Sensitivity** Low Low High Warm Up Time Instantaneous Instantaneous Instantaneous Few minutes Slow Fast Fast Very fast Low High Medium Price Low (<1/2" Diameter) (<1/2" Diameter)

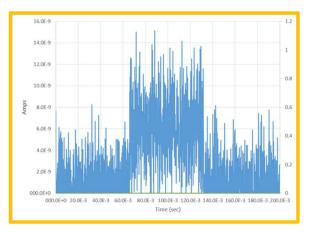
© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.

HAMAMATS

PHOTON IS OUR BUSINESS

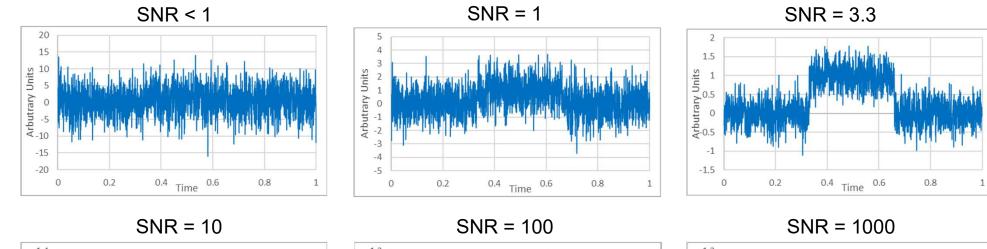

3

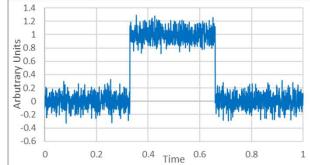

What is Signal to Noise Ratio (SNR)

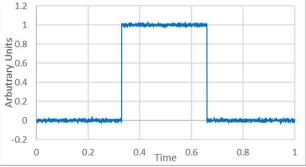

HAMAMATSU

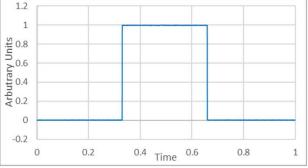
SNR can tell us the relative separation between the signal and the noise.

 $SNR = \frac{Signal}{\sqrt{Dark Noise^2 + Signal Noise^2 + Readout Noise^2}}$

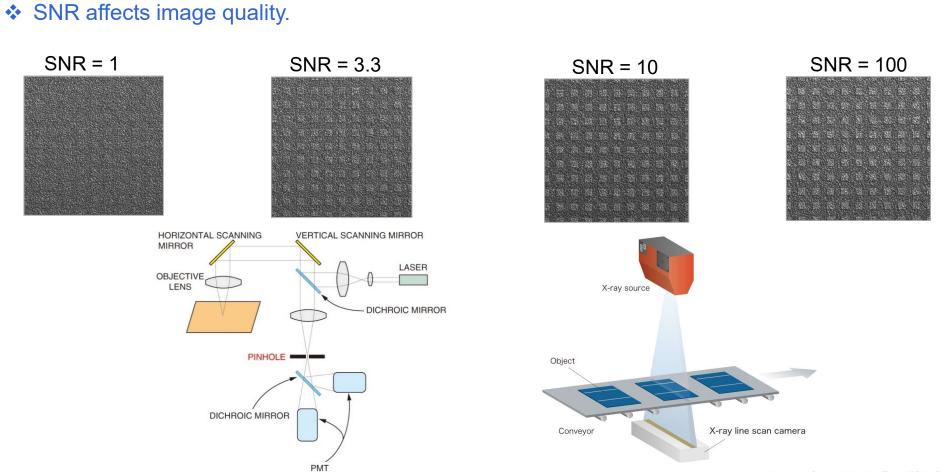



HAMAMATSU


PHOTON IS OUR BUSINESS


What SNR Value Do I Need?

SNR < 1 is unusable, and SNR < 3.3 is a challenge. Highest SNR is the goal.

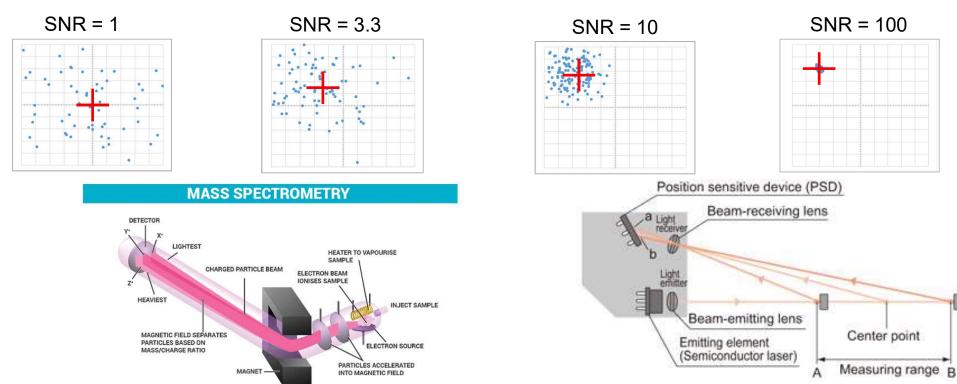


© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.

5

SNR in Other Forms: Image Quality

HAMAMATSU



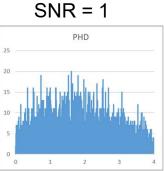
HAMAMATSU

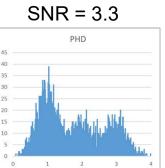
PHOTON IS OUR BUSINESS

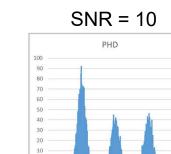
SNR in Other Forms: Position Sensitive Measurement

- "Location" of noise is generally evenly distributed.
- Center of gravity drifts towards center of active area with low SNR.

https://www3.panasonic.biz/ac/ae/service/tech_support/fasys/tech_guide/measurement/laser/index.jsp

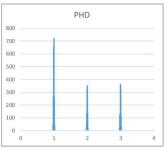

https://microbenotes.com/mass-spectrometry-ms-principle-working-instrumentation-steps-applications/

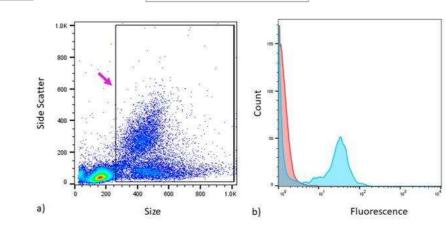

[©] Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.

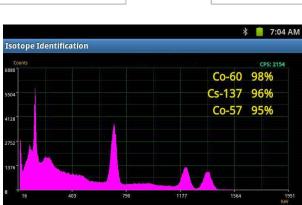

IS OUR

SNR in Other Forms: Pulse Height Distribution (PHD)

- Narrow PHD results from nearly identical pulse heights for identical input >> High SNR
- ✤ Broad PHD results from variation in pulses heights for identical inputs ► Low SNR

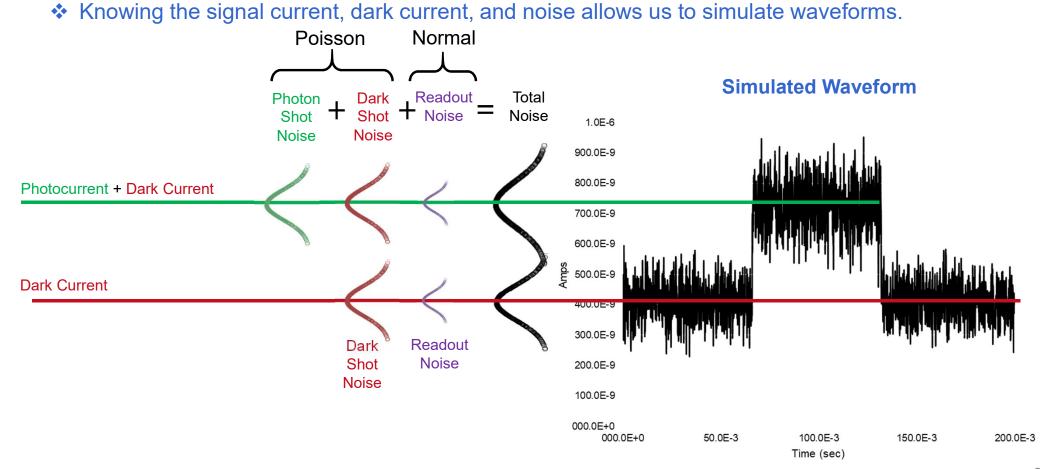





0

0

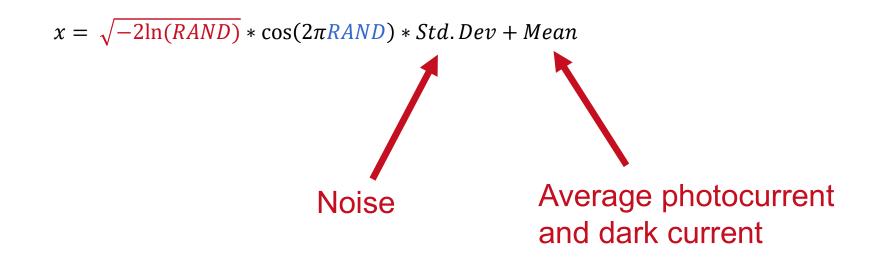
SNR = 100



https://www.prweb.com/releases/2014/03/prweb11650449.htm

https://www.usgs.gov/media/images/flow-cytometric-dot-plot © Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.

Simulating Signal and Noise


HAMAMATSU

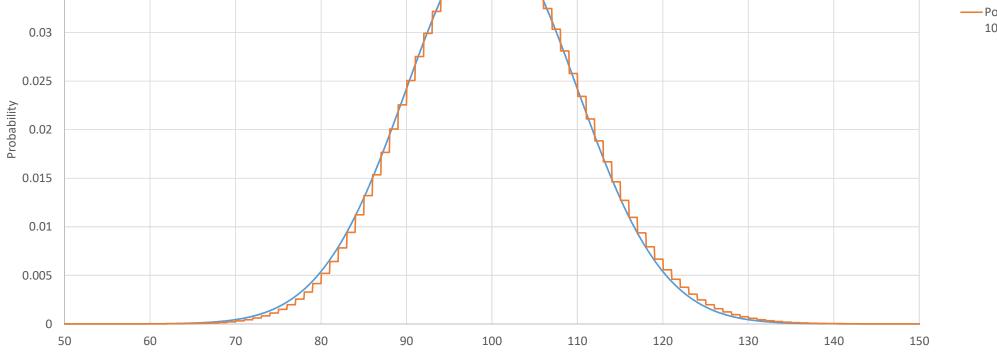
© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 9

Generating Basic Waveforms

Sox-Muller Transform to convert uniformly distributed random number to normal distrubiton

Noise Distribution

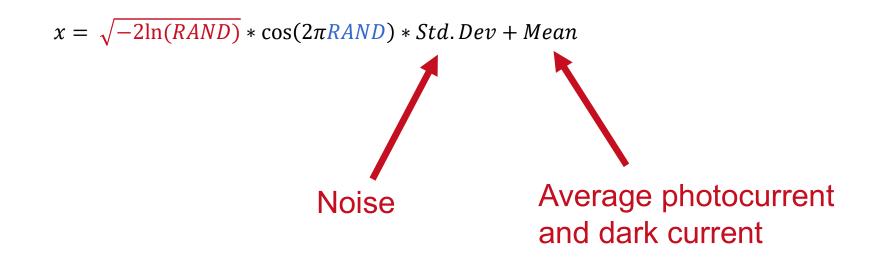
Ph	oton counting		Analog measurement		
	0.1e	1e	10e	100e	
Shot noise (Photon/Dark)	Poisson distribution Approximation to Normal distribution				


Readout noise	Normal distribution

Normal vs. Poisson Distribution

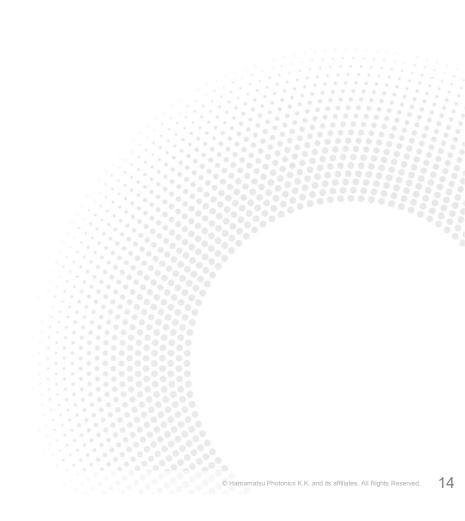
0.04

0.035



© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 12

HAMAMATSU

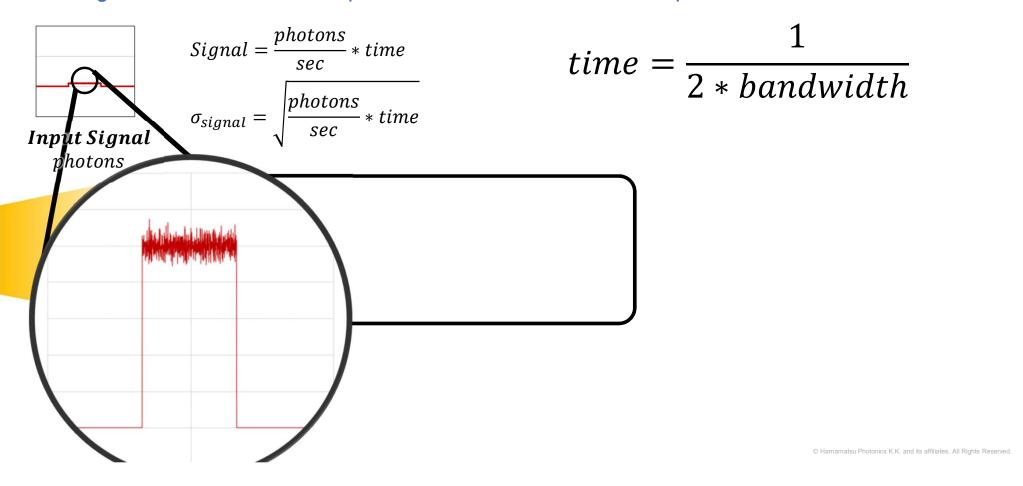

Generating Basic Waveforms

Box-Muller Transform to convert uniformly distributed random number to normal distrubiton

- Signal Shot Noise
- Dark Shot Noise
- Gain
- Excess Noise from Gain
- Readout Noise
- Dominant Noise Sources
- Detector Selection Process

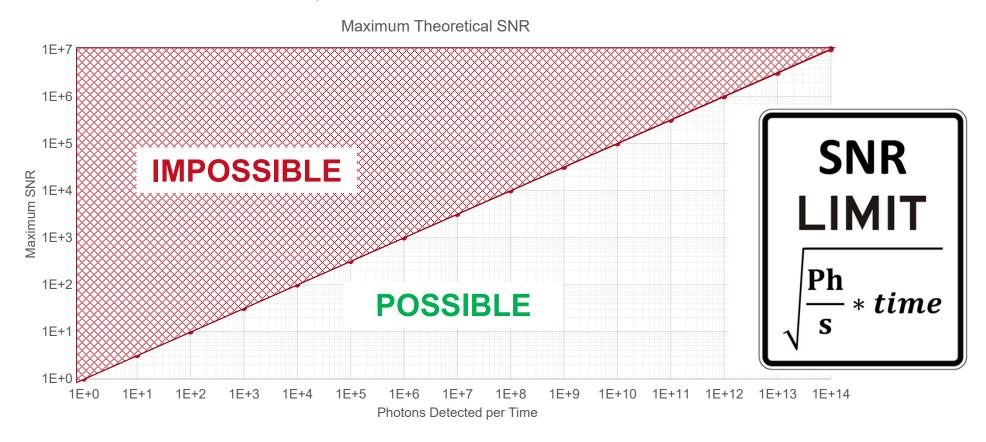
Schematic View of Signal and Noise

٦


© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 15

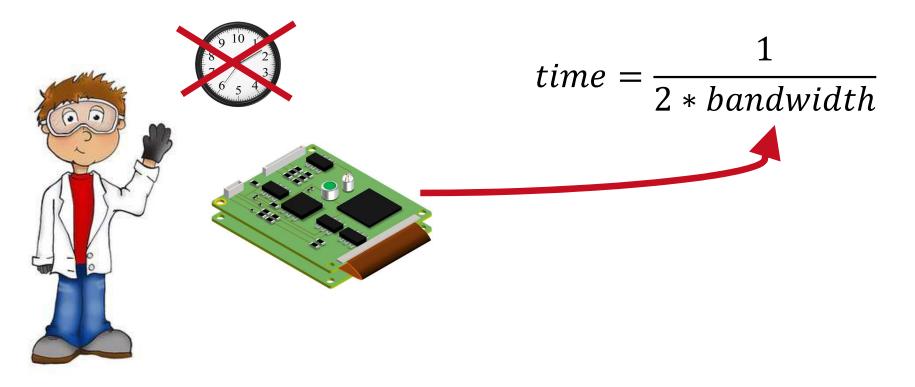
Schematic View of Signal and Noise

HAMAMATSU PHOTON IS OUR BUSINESS


16

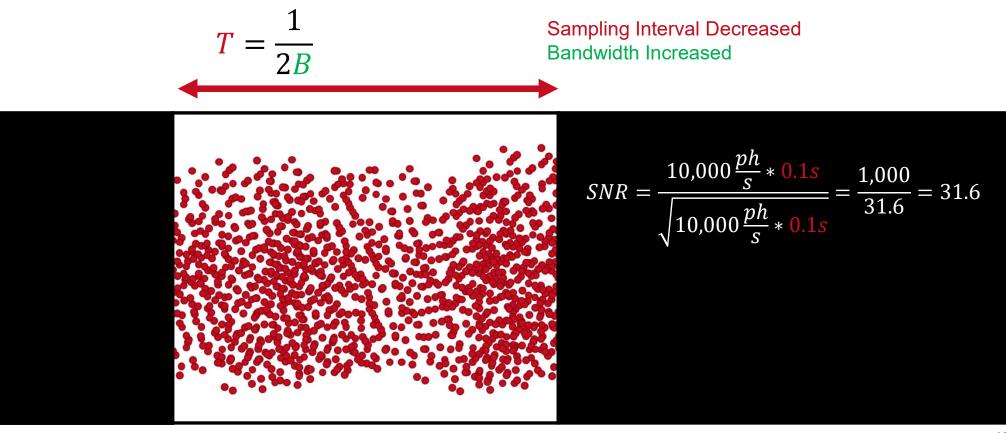
Light itself has noise called photon shot noise due to random photon arrivals.

The statistical limit of SNR is photon shot noise.



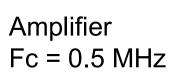
© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.

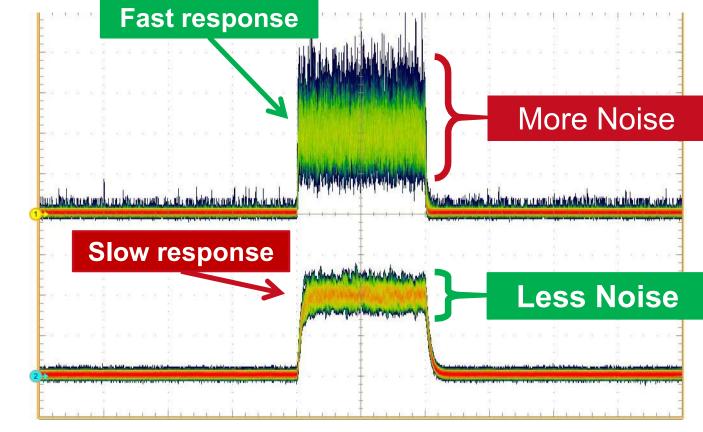
Sampling Time =/= Observation Time


✤ Our definition of sampling time is ½ inverse of the detector & electronics bandwidth.

Sampling time has no relationship to how long you obseve the detector output.

Integration Period


Higher bandwidth results in more variation in each signal sample.



Bandwidth Optimization

✤ Higher bandwidth results in faster time response, but also more noise.

Amplifier Fc = 4 MHz

Signal Degradation to Low BW

HAMAMATSU

PHOTON IS OUR BUSINESS

Low bandwidth detector and readout circuit will distort fast input signals.

• Degradation can be caused by detector speed or readout circuit bandwidth and slew rate.

Describing incident light

Incident intensity can be described by Watts or photons per second.

We can convert from Watts to photons per second by dividing by the energy of the photon

Radiant flux	Photons per second		
Watts	1/s		

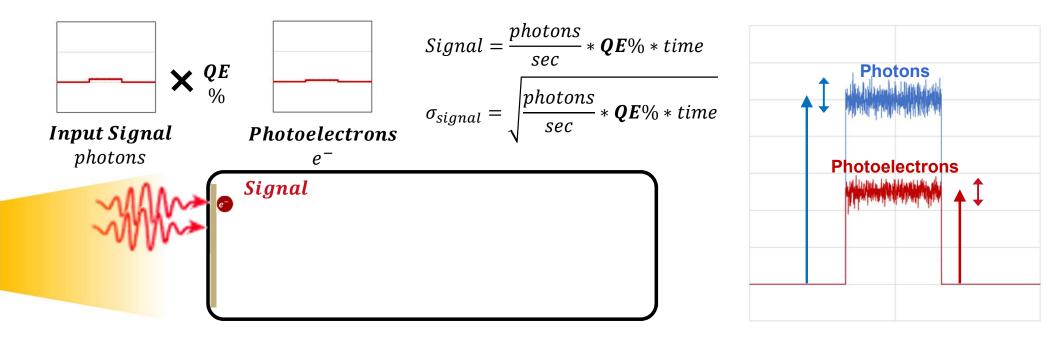
Conversion:

Energy of a photon:

$$E[J] = \frac{h[Js] c\left[\frac{m}{s}\right]}{\lambda[m]}$$

Watts to Photons per second:

Photons per second
$$\left[\frac{1}{s}\right] = \frac{Radiant flux \left[\frac{J}{s}\right]}{E[J]}$$

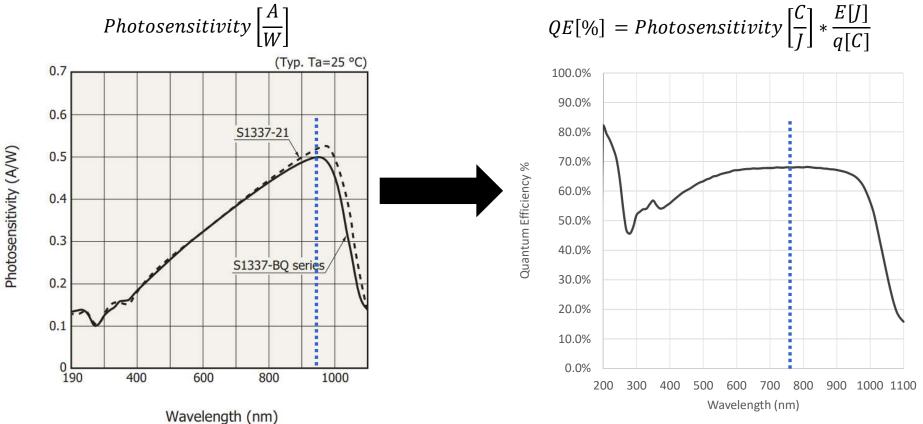

 $h = 6.63 * 10^{-3} [Js] \rightarrow Planck's constant$ $c = 3 * 10^{8} \left[\frac{m}{s}\right] \rightarrow Speed of light in a vacuum$ - 1 -

Quantum Efficiency

HAMAMATSU

PHOTON IS OUR BUSINESS

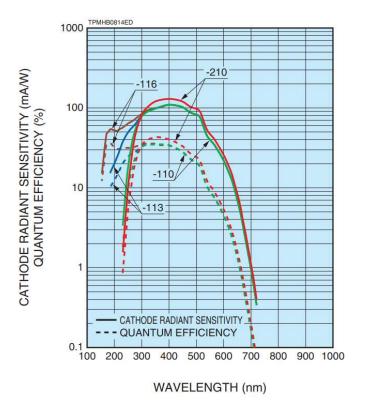
✤ Higher QE improves SNR, lower QE reduces SNR.



Quantum Efficiency and Photosensitivity

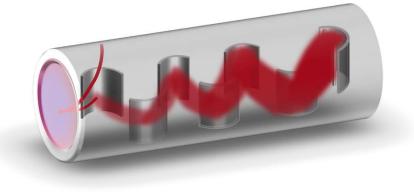
Detection Efficiency Terminology: Photodiode

Photosensitivity can be converted to Quantum Efficiency %.



 $^\circ$ Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 25

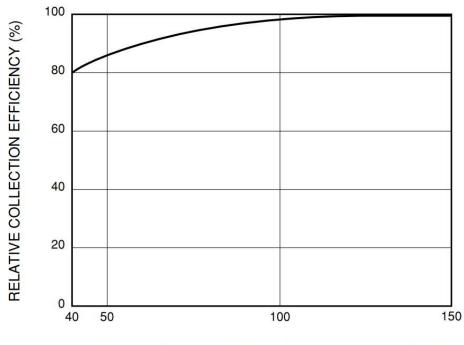
Detection Efficiency Terminology: PMT



PMT Collection Efficiency % should also be included to estimate signal.

$$QE_{eff}[\%] = QE_{cathode}[\%] * CE[\%]$$

Signal = $\frac{Photon}{sec} * QE_{eff}[\%] * Gain * time$

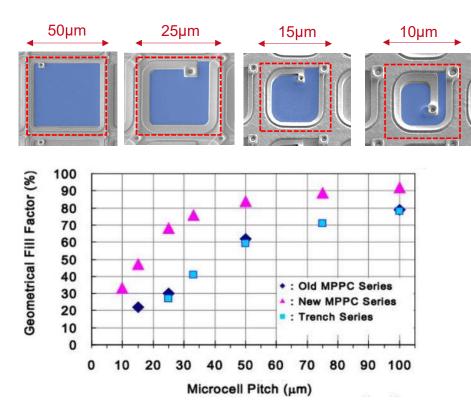

 $CE[\%] = Dy_1 Collection Efficiency \approx 70\% - 90\%$

Collection Efficiency vs. Voltage

Higher applied voltage to the PMT overall results in higher collection efficiency

PHOTOCATHODE TO FIRST DYNODE VOLTAGE (V)

Detection Efficiency Terminology: MPPC (SiPM)



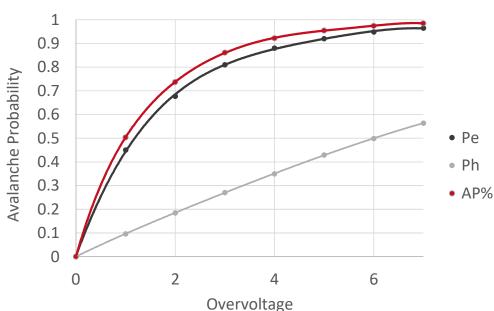
PDE is used to calculate the output signal of MPPC(SiPM). $Signal = \frac{Photon}{sec} * PDE[\%] * Gain * time$ PDE[%] = QE[%] * AP[%] * FF[%]N+ $1[e^{-}]$ $10^{6}[e^{-}]$ >> $Signal = \frac{Photon}{sec} * QE[\%] * AP[\%] * Gain + \frac{Photon}{sec} * QE[\%] * (1 - AP[\%])$

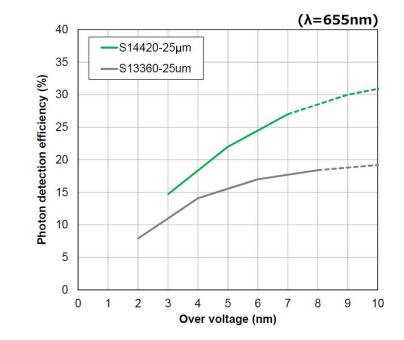
© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 28

Considerations for SiPM (MPPC) Photon Detection Efficiency

★ Large microcells ► higher FF% ► higher PDE%

© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 29


PHOTON


IS OU

Considerations for SiPM (MPPC) Photon Detection Efficiency

✤ AP% is increased with higher overvoltage

Overvoltage = Applied Voltage – Breakdown Voltage

 $AP\%(V) = P_e + P_h - (P_e P_h)$

 $^{\circ}$ Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 30

HAMAMATSU

Key Takeaways: Quantum Efficiency Photosensitivity

HAMAMATSU

Phototube & Photodiodes

APD

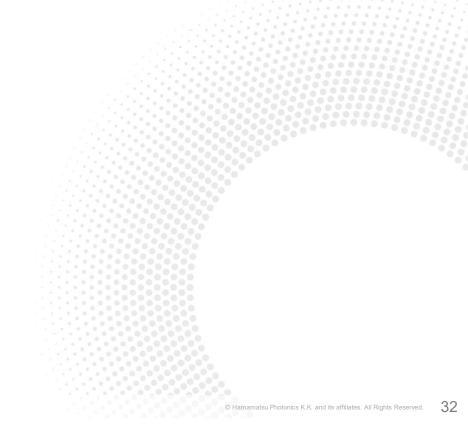
$$Signal = \frac{photons}{sec} * QE\% * time$$

$$Signal = \frac{photons}{sec} * QE\% * Gain * time$$

PMT

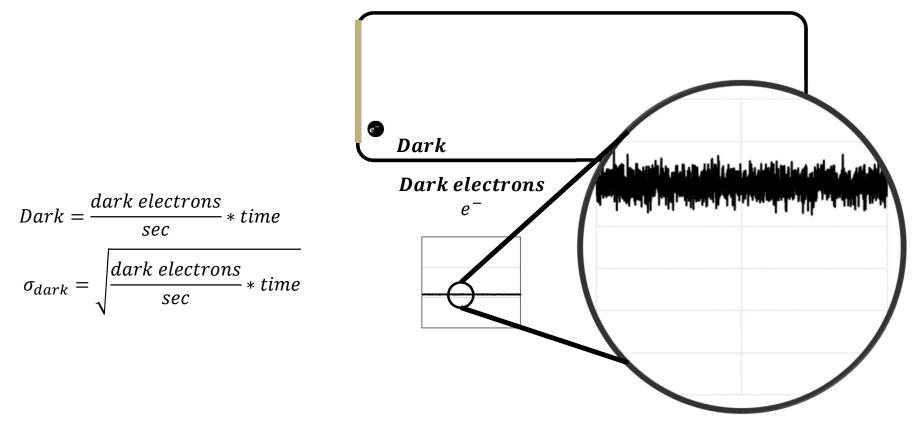
MPPC (SiPM)

 $Signal = \frac{photons}{sec} * QE\% * CE\% * Gain * time$


$$Signal = \frac{photons}{sec} * PDE\% * Gain * time$$

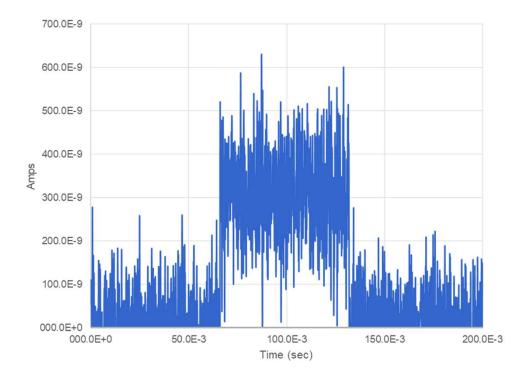
PDE% = QE% * FF% * AP%

 ${\ensuremath{\mathbb O}}$ Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 31


Dark Current & Dark Noise

Dark Noise

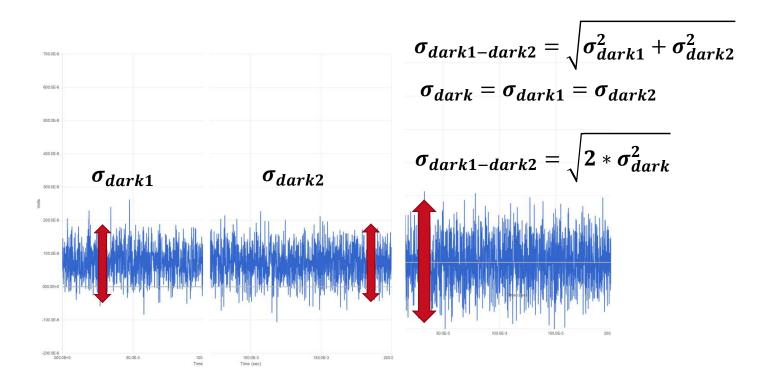
HAMAMATSU PHOTON IS OUR BUSINESS


Dark signal is the average value, its fluctuation is the dark noise.

Dark Offset Subtraction

HAMAMATSU

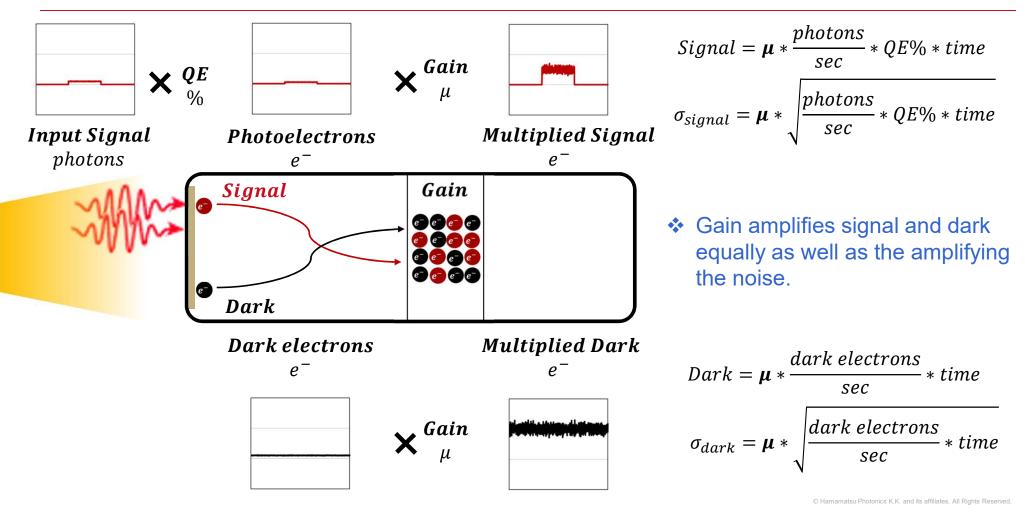
We can subtract the offset ie. mean dark current, but noise remains.



 $^\circ$ Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 34

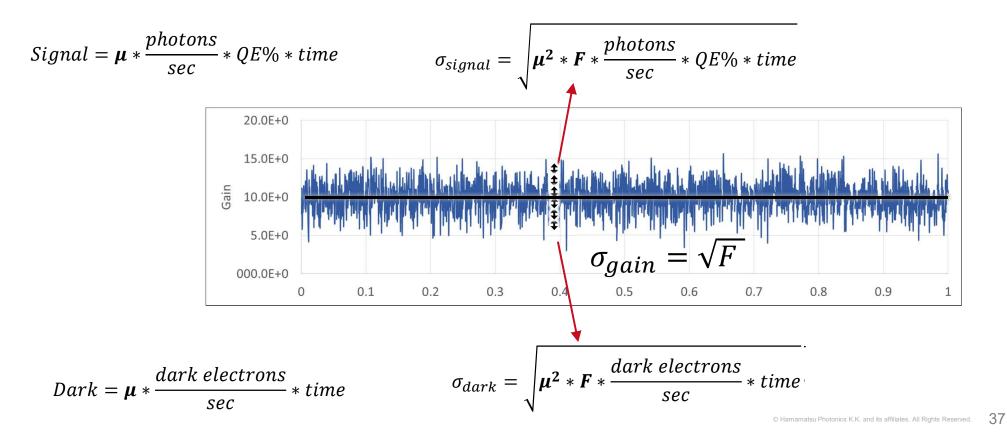
Dark Subtraction Increases Noise

HAMAMATSU


Dark subtraction adds the noise from the dark reference measurement.

HAMAMATSU

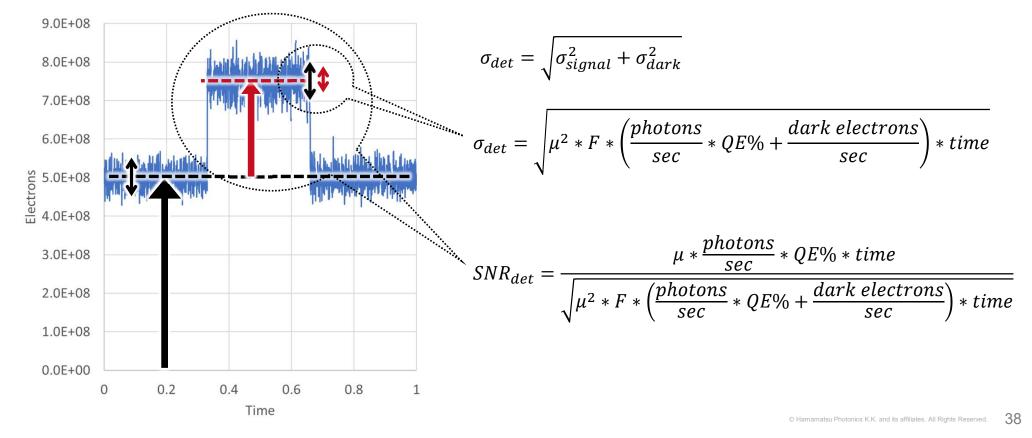
PHOTON IS OUR BUSINESS


36

Gain Fluctuation

HAMAMATSU

Gain randomly fluctuates

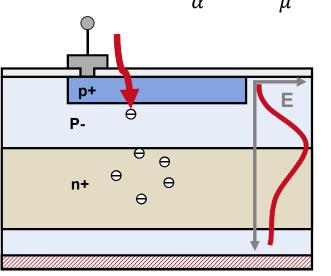

Excess Noise Factor (F) describes the severity of gain fluctuation.

Signal and Noise from the Detector

- Noise terms can be combined by squaring the terms then taking the square root.
- Excess Noise caused by gain reduces the SNR from the detector

Mechanism of Gain and Excess Noise

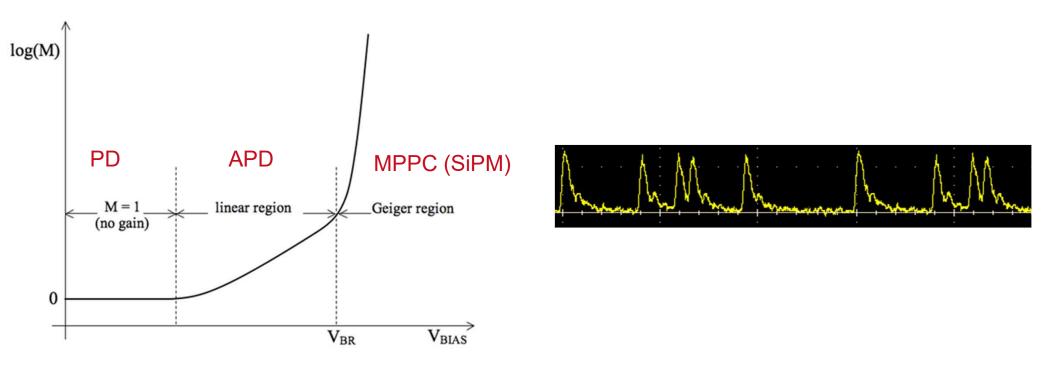
Cause of Excess Noise in Avalanche Photodiodes


Impact ionization from both carriers makes APD gain very noisy.

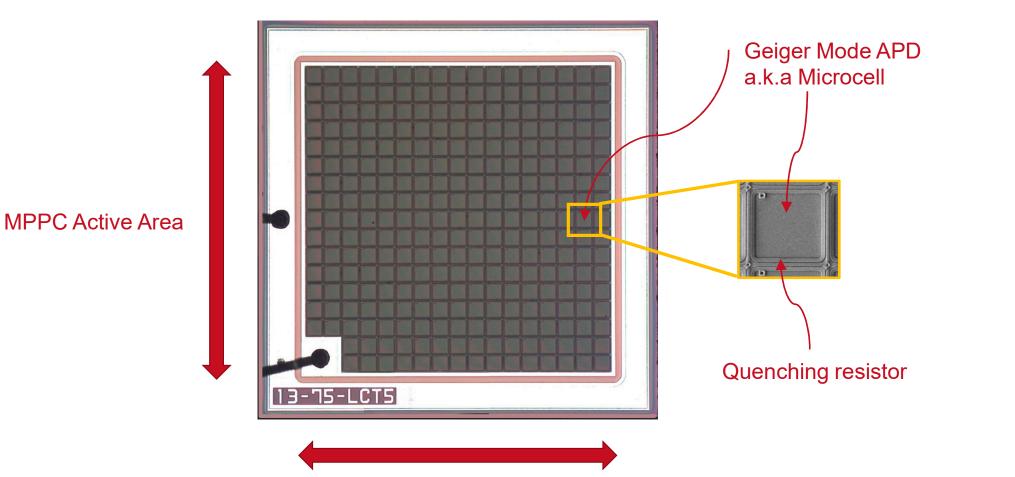
<u>APD</u>

- Low gain many times
- $F = Gain^x$
 - x = Excess noise figure
- *F*~2.0-4.0
- *Gain*: 10 − 100

 α : ionization rate of electrons β : ionization rate of holes

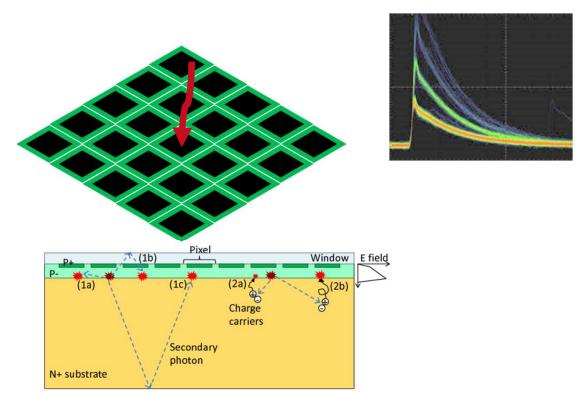

$$F = \mu \frac{\beta}{\alpha} + (2 - \frac{1}{\mu})(1 - \frac{\beta}{\alpha})$$

Geiger Mode APD (SPAD)



- Geiger mode causes the APD output to reach saturation chare.
- Geiger mode gain is almost perfectly uniform ie. low excess noise

Geiger Mode Array = MPPC (SiPM)

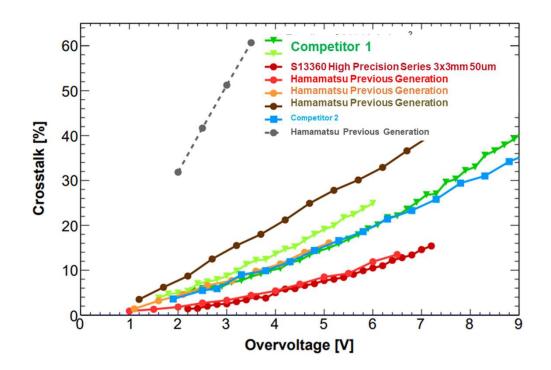


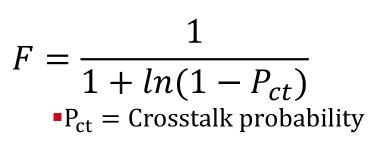
Cause of Excess Noise in MPPC (SiPM)

Crosstalk can make gain appear higher than expected due to additional microcells firing.

MPPC (SiPM)

- Excess charge from crosstalk
- $F = \frac{1}{1 + ln(1 P_{ct})}$
 - P_{ct} = Crosstalk probability
- *F*~ 1.05-1.1
- *Gain*: $10^5 10^6$

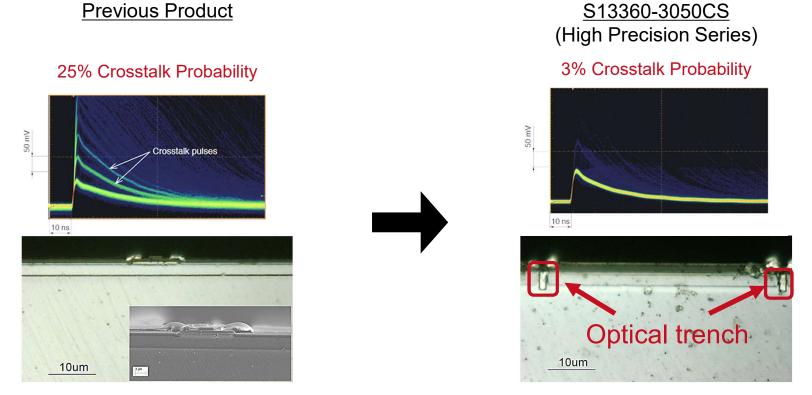



J. Rosado (2015). Characterization and modeling of crosstalk and afterpulsing in Hamamatsu silicon photomultipliers

Cause of Excess Noise in MPPC (SiPM)

HAMAMATSU

Lower crosstalk MPPC achieves lower multiplication noise



S. Vinogradov, 2011. Analytical models of probability distribution and excess noise factor of Solid State Photomultiplier signals with crosstalk

J. Biteau, 2015. Performance of Silicon Photomultipliers for the Dual-Mirror Medium-Sizes Telescopes of the Cherenkov Telescope Array

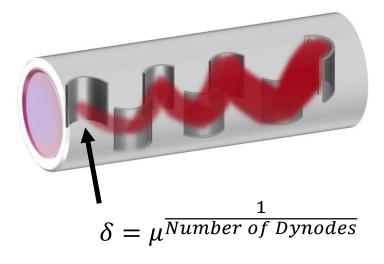
Crosstalk Reduction Development

Optical trenches reduce crosstalk by blocking the transmission of secondary photon.

J. Rosado (2015). Characterization and modeling of crosstalk and afterpulsing in Hamamatsu silicon photomultipliers

HAMAMATSU

Cause of Excess Noise in PMT

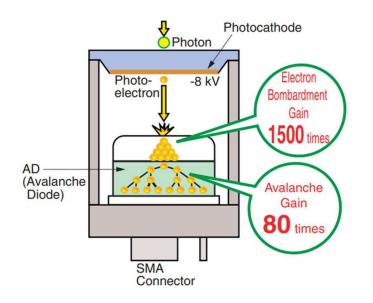

Higher 1st dynode gain results in lower excess noise for PMT

<u>PMT</u>

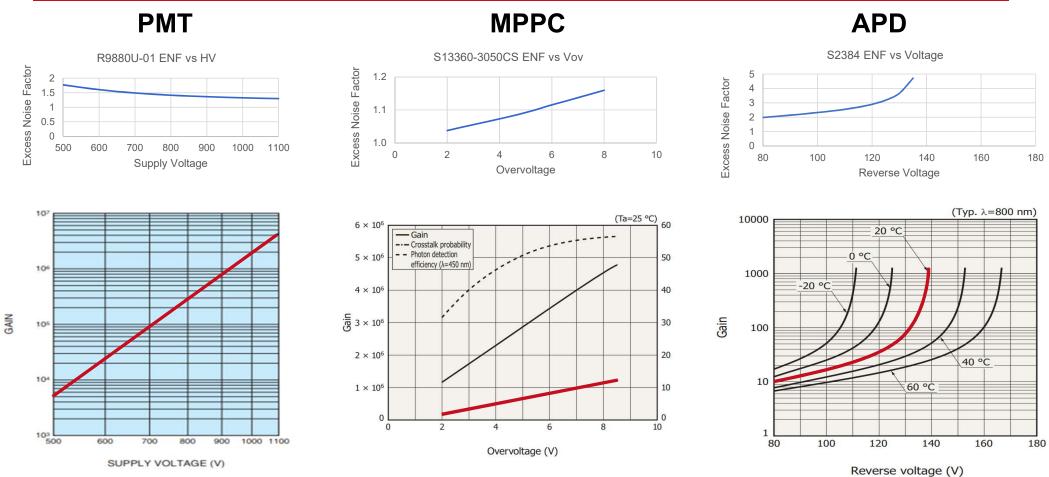
Variation in dynode emission

•
$$F = \frac{\delta}{\delta - 1}$$

- $\delta = Dy_1 gain$
- *F*~1.1 1.4
- *Gain*: $10^4 10^6$


Hybrid Photo Detector

✤ HPD gain is closest to ideal noiseless gain because of very high 1st stage gain.


<u>HPD</u>

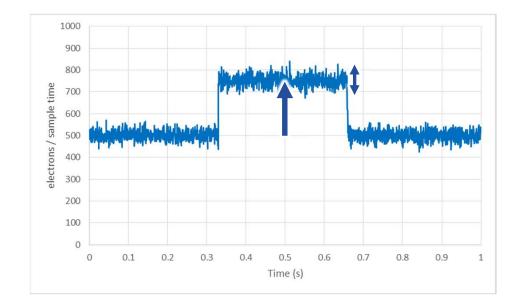
Electron bombardment x avalanche multiplication

•
$$F = \frac{\delta}{\delta - 1} = \frac{1500}{1499} \sim 1$$

Operating Consideration for Excess Noise Factor

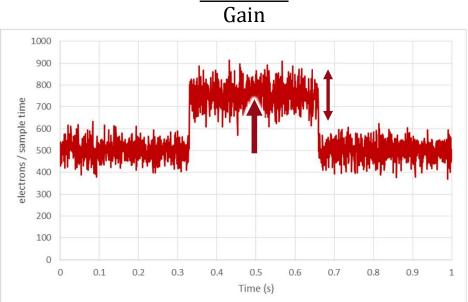
nerelee renage (r)

PHOTON IS OUR BUSINES


 ${\rm \odot}$ Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 48

SIMULATION REFERENCE ONLY

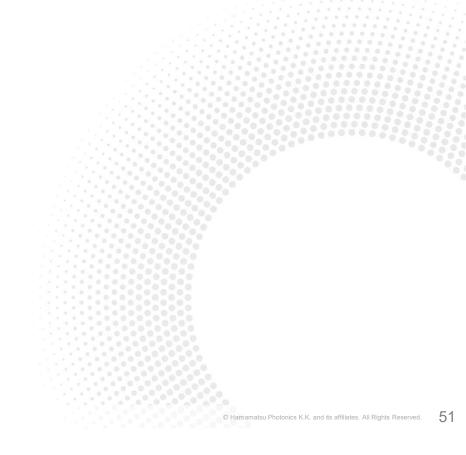
HAMAMATSU PHOTON IS OUR BUSINESS


Excess Noise Factor Effect

Output with gain is just an enlarged copy, but noisier.

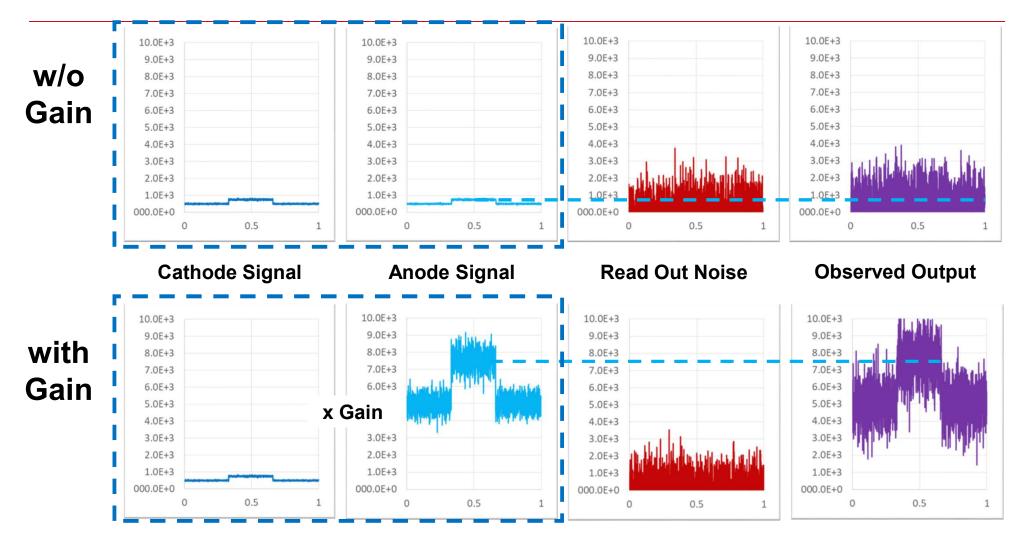
Cathode e⁻

$\frac{\text{Anode } e^-}{\text{Gain}}$


Key Takeaways for Excess Noise

- Detectors with gain add excess noise to the signal which reduces the SNR of the detector output.
- Gain is simply enlarged copy, but noisier.

	MPPC	РМТ	APD		
Gain	10 ⁵ - 10 ⁷	10 ⁴ - 10 ⁷	10 - 100		
Excess Noise Factor (F)	1.05 – 1.1	1.1 – 1.2 (HPD ~ 1.0)	2 - 4		
Cause of ENF	Crosstalk	Dynode secondary emission variation	Unpredictable ionization rate due to minority carrier ionization		
Detector considerations for reducing ENF	Minimize crosstalk	Maximize 1 st dynode gain	Minimize excess noise figure		
Operating considerations for reducing ENF	Lower overvoltage	Higher voltage	Lower voltage		


Benefits of Intrinsic Gain

SIMULATION REFERENCE ONLY

HAMAMATSU

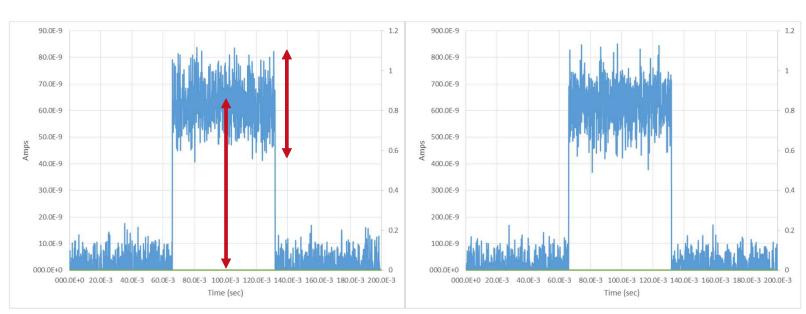
PHOTON IS OUR BUSINESS

Photodetector with and without Intrinsic Gain

SIMULATION REFERENCE ONLY

HAMAMATSU

PHOTON IS OUR BUSINESS


50.0E+3 50.0E+3 50.0E+3 50.0E+3 x Gain 45.0E+3 45.0E+3 45.0E+3 45.0E+3 40.0E+3 40.0E+3 40.0E+3 40.0E+3 35.0E+3 35.0E+3 35.0E+3 35.0E+3 30.0E+3 30.0E+3 30.0E+3 30.0E+3 Intrinsic 25.0E+3 25.0E+3 25.0E+3 25.0E+3 20.0E+3 20.0E+3 20.0E+3 20.0E+3 Gain 15.0E+3 15.0E+3 15.0E+3 15.0E+3 10.0E+3 10.0E+3 10.0E+3 10.0E+3 5.0E+3 5.0E+3 5.0E+3 5.0E+3 000.0E+0 000.0E+0 000.0E+0 000.0E+0 0 0.5 0 0.5 1 0 0.5 0 0.5 1 1 1 **Cathode Signal Anode Signal Read Out Noise Observed Output** 50.0E+3 50.0E+3 50.0E+3 50.0E+3 45.0E+3 45.0E+3 45.0E+3 45.0E+3 40.0E+3 40.0E+3 40.0E+3 40.0E+3 35.0E+3 35.0E+3 35.0E+3 35.0E+3 30.0E+3 30.0E+3 30.0E+3 30.0E+3 **External** 25.0E+3 25.0E+3 25.0E+3 25.0E+3 20.0E+3 20.0E+3 20.0E+3 20.0E+3 Gain 15.0E+3 15.0E+3 15.0E+3 15.0E+3 10.0E+3 10.0E+3 10.0E+3 10.0E+3 5.0E+3 5.0E+3 5.0E+3 5.0E+3 000.0E+0 000.0E+0 000.0E+0 000.0E+0 0.5 0 0.5 0 0.5 0 0 0.5 1 1 1 1 53

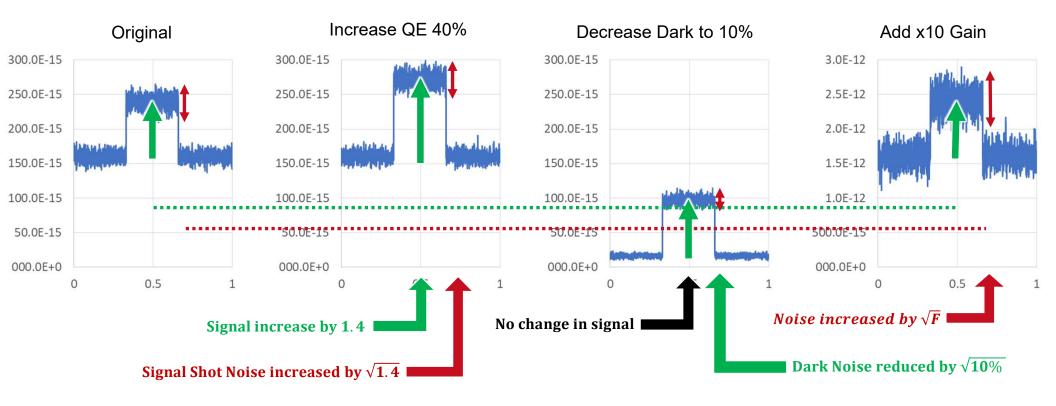
Intrinsic Gain vs. External Gain

HAMAMATSU PHOTON IS OUR BUSINESS

100k vs. 1M Gain

Readout noise becomes insignificant with high intrinsic gain so adding extra gain has no improvement.

100,000 Gain

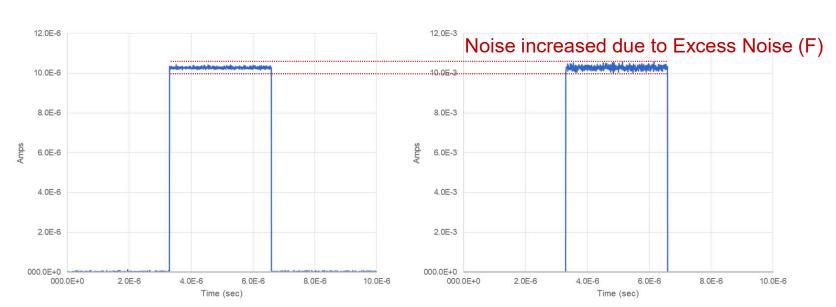

1,000,000 Gain

 \odot Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 54

SIMULATION REFERENCE ONLY

QE%, Dark, and Gain Effect on Detector SNR

✤ Increasing QE and decreasing dark increases detector SNR, gain decreases detector SNR.



SIMULATION REFERENCE ONLY

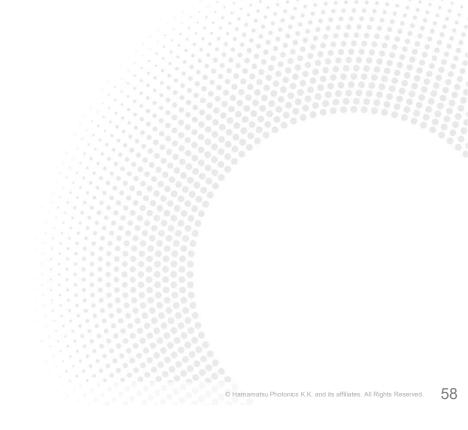
HAMAMATSU

Unnecessary gain

Adding gain when not needed increases noise, and reduces SNR.

1x Gain (ie gainless)

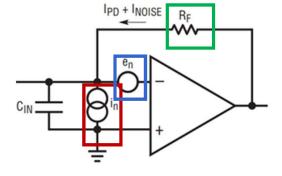
1,000 Gain


© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 56

- Readout noise can make it impossible to measure weak signals without gain.
 - Intrinsic gain raises the signal above readout noise.
 - External (amplifier) gain does not raise signal above readout noise.
 - With enough gain readout noise becomes insignificant.
 - If readout noise is insignificant, then the system output SNR = detector output SNR
 - Gain can only reduce detector output SNR.
 - Increasing Quantum Efficiency % and reducing Dark Noise can improve detector SNR.

Readout Noise

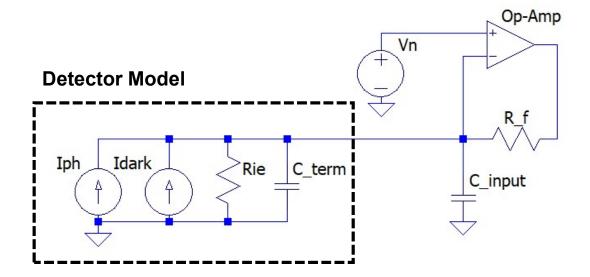
Detector Gain



PHOTON IS OUR BUSINES

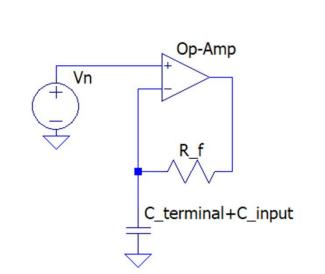
Readout noise can come from voltage noise and current noise (amplifier), and Johnson noise (resistor).

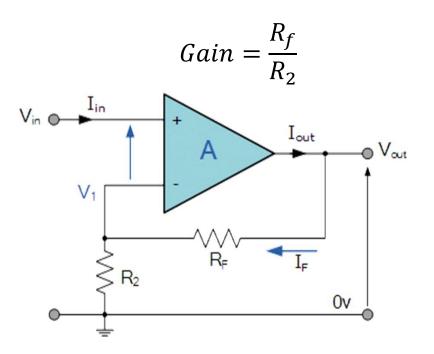
		OPA846ID, IDBV						
		TYP	YP MIN/MAX OVER TEMPERATURE					1
PARAMETER	CONDITIONS	+25°C	+25°C ⁽¹⁾	0°C to 70°C ⁽²⁾	-40°C to +85°C ⁽²⁾	UNITS	MIN/ MAX	TEST LEVEL ⁽³⁾
AC PERFORMANCE (see Figure 1)					êv ve			
Closed-Loop Bandwidth	$G = +7, R_G = 50\Omega, V_O = 200 mV_{PP}$	500				MHz	typ	С
10	$G = +10, R_G = 50\Omega, V_O = 200 mV_{PP}$	400	270	250	225	MHz	min	В
	$G = +20, R_G = 50\Omega, V_O = 200 mV_{PP}$	110	82	80	75	MHz	min	В
Gain Bandwidth Product (GBP)	G ≥ +40	1750	1275	1245	1200	MHz	min	В
Bandwidth for 0.1dB Gain Flatness	$G = +10$, $R_L = 100\Omega$, $V_O = 200 \text{mV}_{PP}$	140	40	36	35	MHz	min	В
Peaking at a Gain of +7		000354	1045-1			dB	typ	C
Harmonic Distortion	G = +10, f = 5MHz, V _O = 2V _{PP}					HII		
2nd-Harmonic	$R_L = 100\Omega$	-76	-70	-68	-66	dBc	max	В
	$R_{\rm L} = 500\Omega$	-100	-89	-87	-85	dBc	max	В
3rd-Harmonic	$R_1 = 100\Omega$	-109	-95	-92	-90	dBc	max	В
	$R_{L} = 500\Omega$	-112	-105	-101	-96	dBc	max	В
2-Tone 3rd-Order Intercept	G = +10 f = 10MHz	44	41	40	38	dBm	min	В
Input Voltage Noise	f > 1MHz	1.2	1.3	1.4	1.5	nV/√Hz	max	В
Input Current Noise	f > 1MHz	2.8	3.5	3.6	3.6	pA/√Hz	max	В
Rise-and-Fall Time	0.2V Step	1.2	1.5	1.6	1.8	ns	max	В
Slew Rate	2V Step	625	500	425	350	V/µs	min	В
Settling Time to 0.01%	2V Step	15				ns	typ	С
0.1%	2V Step	10	12	14	16	ns	max	В
1%	2V Step	6	8	10	12	ns	max	В
Differential Gain	$G = +10$, NTSC, $R_L = 150\Omega$	0.02				%	typ	С
Differential Phase	$G = +10$, NTSC, $R_{L} = 150\Omega$	0.02				deg	typ	С


https://www.ti.com/lit/ds/symlink/opa846.pdf

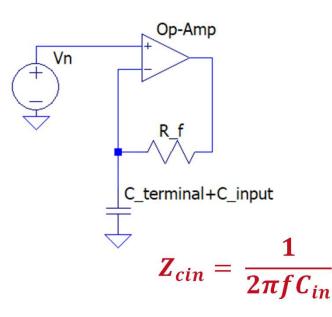
 ${\rm \odot}$ Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. ~~60

Effect of Terminal Capacitance on Voltage Noise Gain


Detector capacitance, stray capacitance, and op-amp input capacitance contribute to the input capacitance.

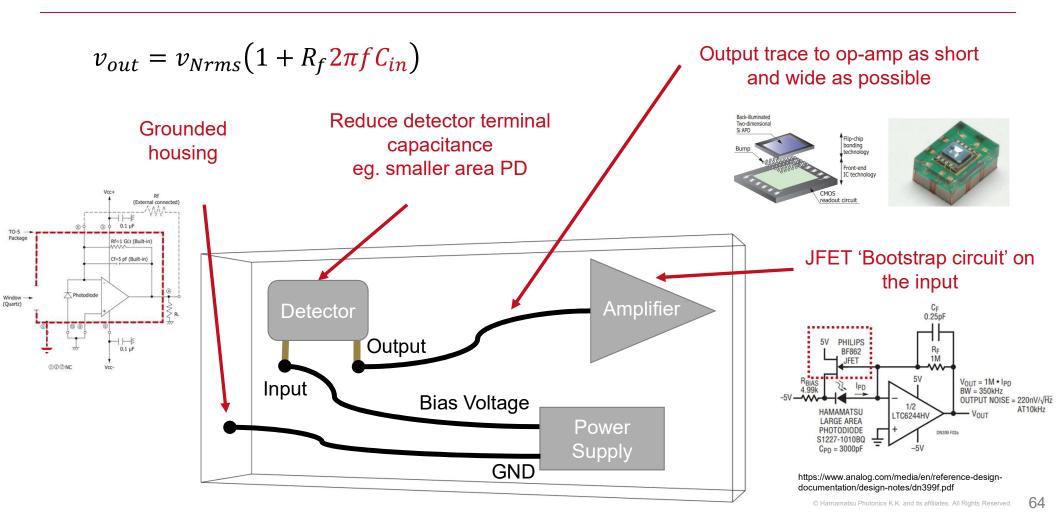


Effect of Terminal Capacitance on Voltage Noise Gain


Input capacitance changes the gain applied to the voltage noise input.

Effect of Terminal Capacitance on Voltage Noise Gain

Input capacitance increases the voltage noise gain.


$$v_{out} = v_{Nrms} \left(1 + \frac{R_f}{Z_{Cin}} \right)$$

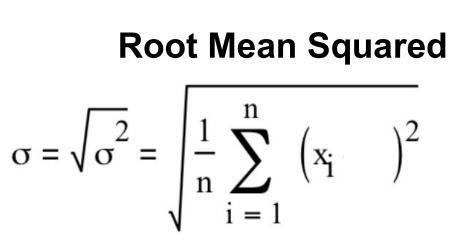
 $v_{out} = v_{Nrms} \left(1 + R_f 2\pi f C_{in} \right)$

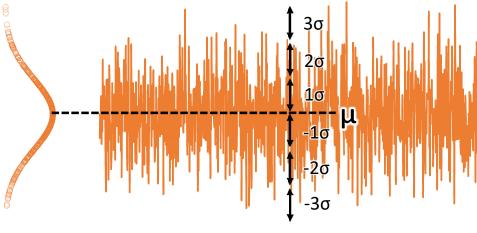
© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 63

HAMAMATSU

Reducing Capacitance

Standard Deviation and RMS

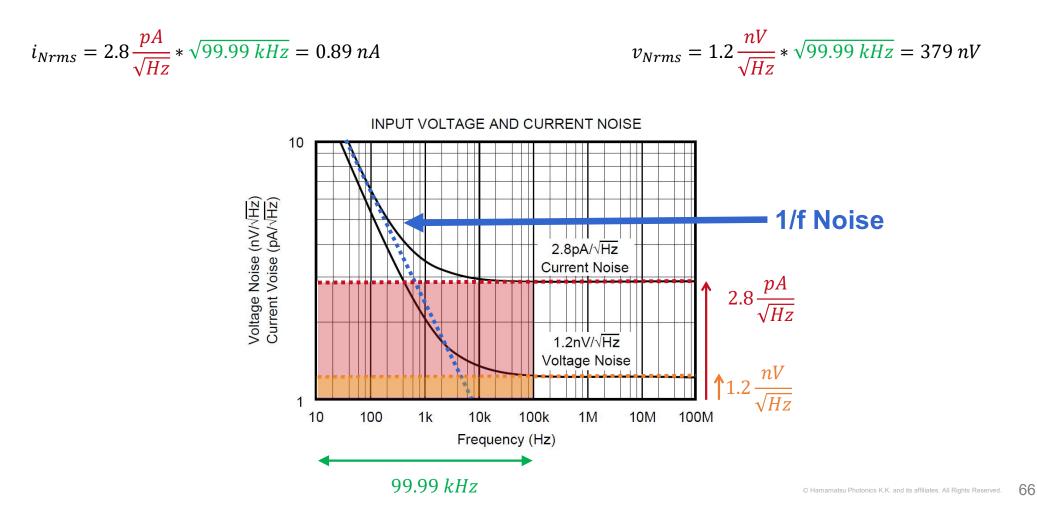

We need the RMS of readout noise to calculate the overall SNR.


Shot Noise:

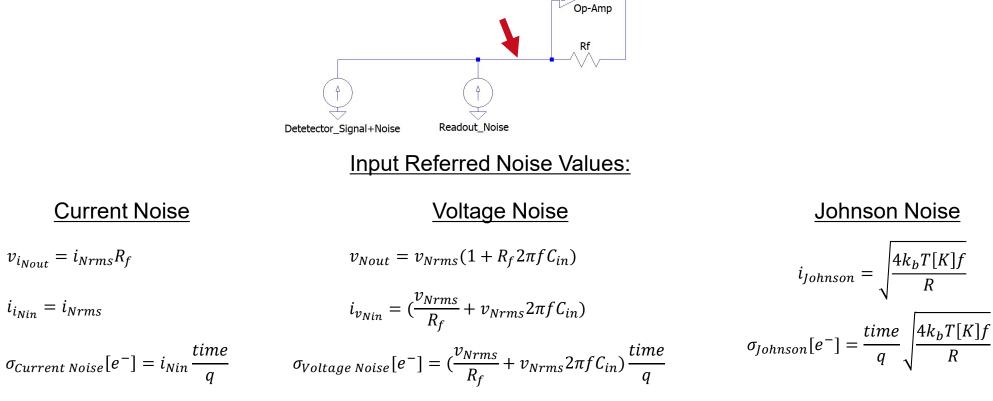
Noise = Standard Deviation

Readout Noise:

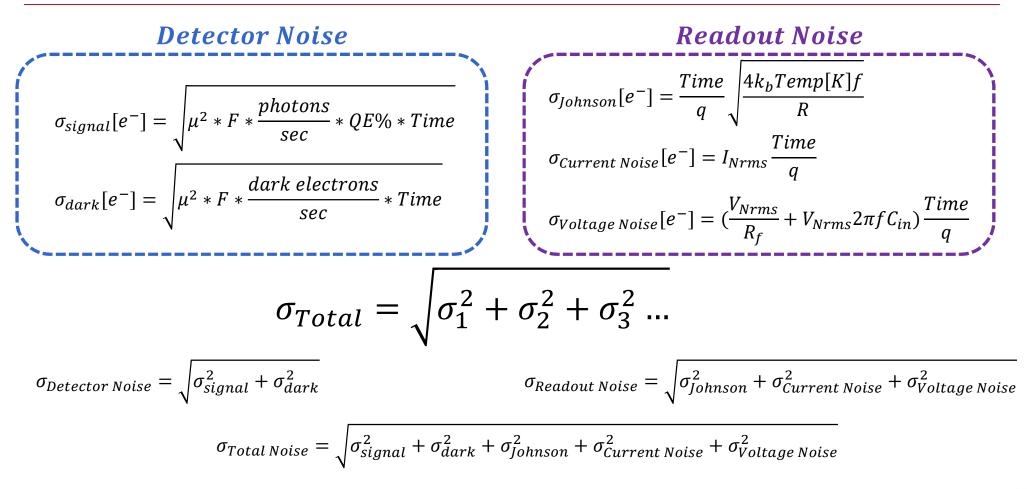
Noise = RMS = Standard Deviation when the Average is zero (μ=0)



https://en.wikipedia.org/wiki/Standard_deviation


Calculating RMS from Noise Density

HAMAMATSU PHOTON IS OUR BUSINESS



Noises Referred to the Input

✤ Noise values converted to electrons at the input of the op-amp, can be compared easily to the detector noise.

Noise Sources Review

© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 68

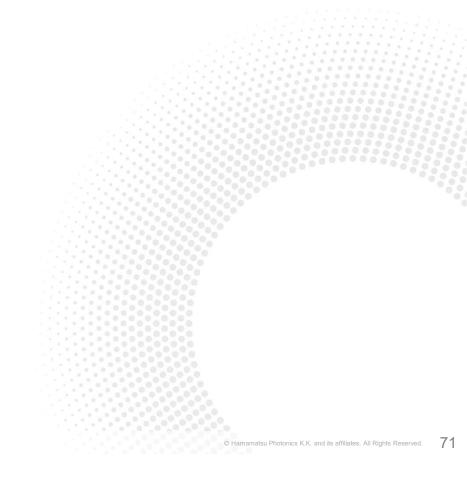
Gain Requirement

✤ The purpose of intrinsic gain is to raise the signal above readout noise.

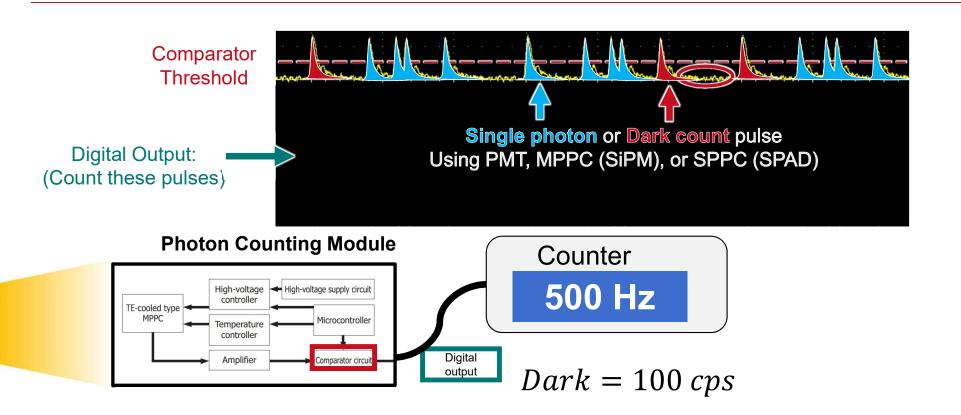
$$\frac{photons}{sec} * QE\% * Time * \mu > \sigma_{Readout Noise}$$

$$\mu > \frac{\sigma_{Readout \ Noise}}{\frac{photons}{sec} * QE\% * time}$$

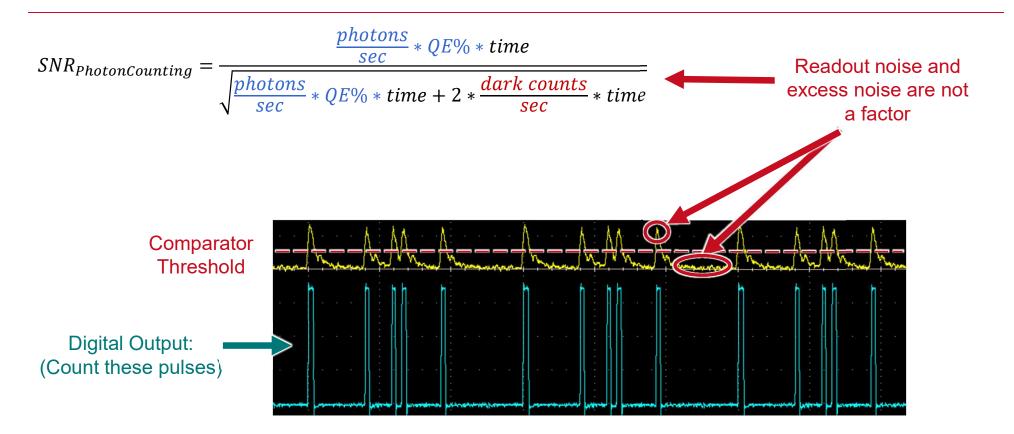
Detector Gain



	Photodiode	APDs	MPPC	РМТ
Quantum Efficiency	80 - 90%	80 - 90%	25 - 50% (PDE)	10 - 20% (QE _{eff})
Gain	1	<100	10 ⁵ ~10 ⁶	~106
Excess Noise Factor	1	~5	~1.05	~1.2
Spectral Range	Up to 1200 nm (Silicon) Up to 2.6 um (InGaAs)	Up to 1150 nm (Silicon) Up to 1700 nm (InGaAs)	320 to 900 nm (Peak 450-470 nm)	190 to 900 nm
Dynamic Range	Limited by amplifier	Limited by amplifier	Limited by number of microcells	Limited by divider current
Limit of Detection	nW Severly limited by readout noise	pW Limited by readout noise	fW Limited by dark noise ~ 100,000 cps (Noisy)	fW Limited by dark noise ~ 500 cps (Quiet)
Bias Voltage	-	~200 V	~ 50 V	~ 1000 V
Mechanical Robustness	Rugged	Rugged	Rugged	Good
Magnetic Field	Immune	Immune	Immune	Need protection


 \odot Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 70

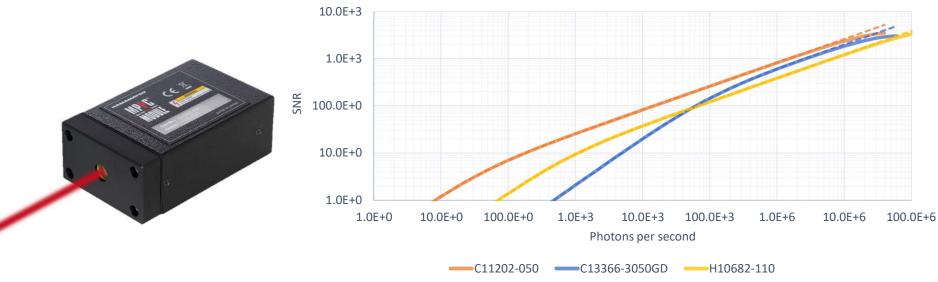
Photon Counting


Photon Counting

Signal = 500 - 100 *cps* = 400 *cps*

HAMAMATSU

Photon Counting



HAMAMATSU

PHOTON IS OUR BUSINESS

Photon Counting Device

Family	Part Number	Active Area	Dark Count Rate (typ.)
SPPC Module (SPAD)	C11202-050	Φ <u>0.05m</u> m	7 cps
MPPC Digital Module (SiPM)	C13366-1550GD	1.5 x 1.5 mm	2,500 cps
PMT Photon Counting Head	H10682-110	Φ 8 mm	50 cps

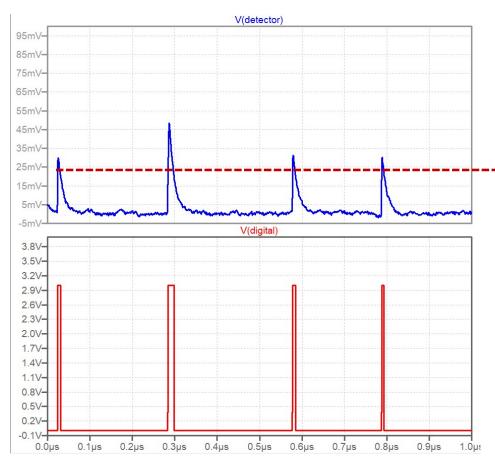
ved. 74

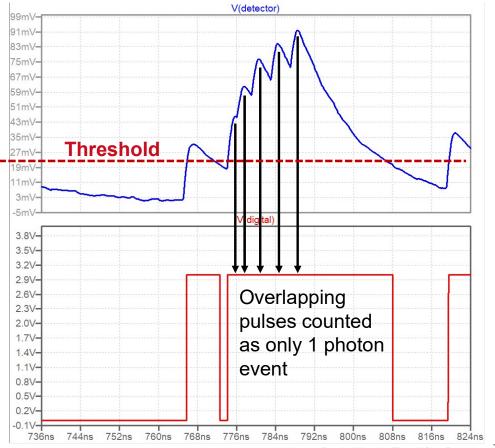
HAMAMATSU

PHOTON IS OUR BUSINESS

Photon Counting Device

Family	Part Number	Active Area	Dark Count Rate (typ.)	
SPPC Module (SPAD)	C11202-050	<mark>ቀ 0.05m</mark> m	7 cps	
MPPC Digital Module (SiPM)	C13366-1550GD	1.5 x 1.5 mm	2,500 cps	
PMT Photon Counting Head	H10682-110	682-110 Φ 8 mm 50 cr		
	10.0E+3 1.0E+3 PMT large acti collects more 1.0E+0	photons		

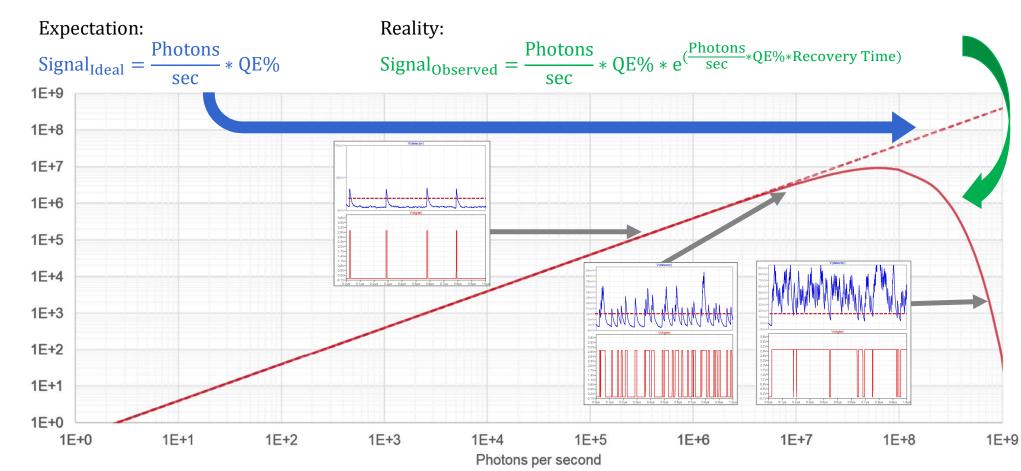

ved. 75


HAMAMATSU

PHOTON IS OUR BUSINESS

Limitations of Photon Counting

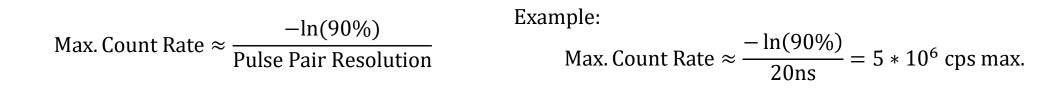
Ideal for Low Light Levels



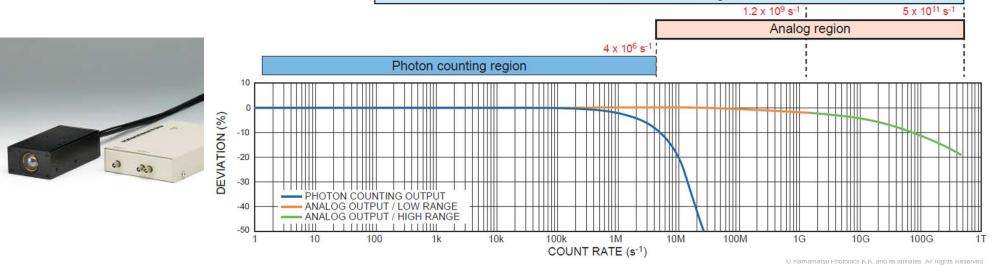
⁷⁶

HAMAMATSU

PHOTON IS OUR BUSINESS


Count Rate Non-linearity

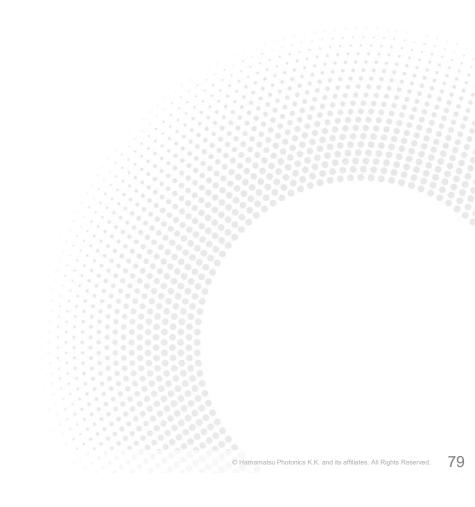
© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 77


Signal Counts

Upper Limit of Linearity for Photon Counting

Photon count rate

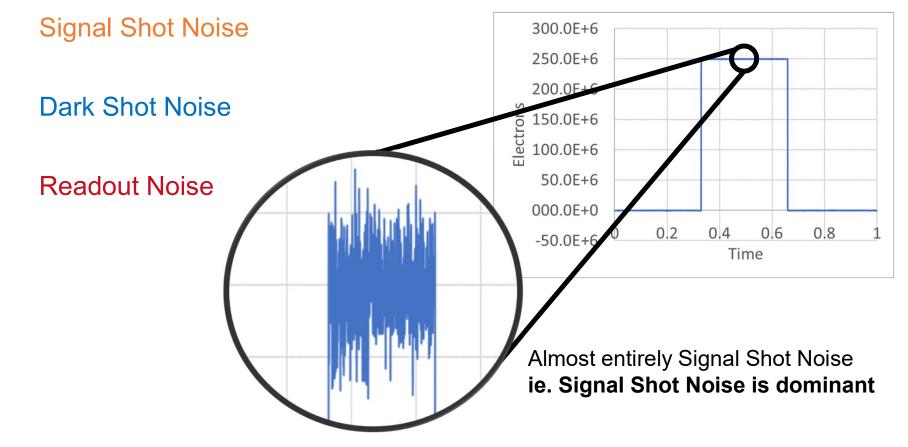
H13126-01 count region



PHOTON IS OUR BUSINESS

78

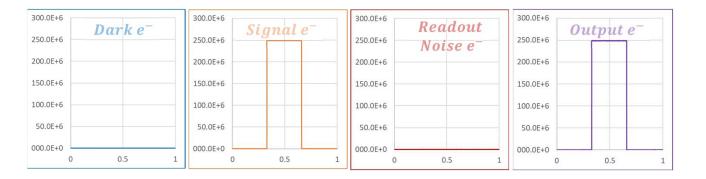
Analog Measurement



HAMAMATSU

PHOTON IS OUR BUSINESS

Dominant Noise Sources


Noise Sources:

HAMAMATSU

PHOTON IS OUR BUSINESS

Dominant Noise Sources

HAMAMATSU

PHOTON IS OUR BUSINESS

Noise Sources: $\frac{QE\%}{F} \qquad NR = \frac{Signal}{\sqrt{\sigma_{Signal+BG}^2 + \sigma_{Dark}^2 + \sigma_{Readout Noise}^2}}$ Signal + BG Shot Noise Dark Shot Noise $SNR \cong \frac{Signal}{\sqrt{\sigma_{Signal+B}^2}} = \frac{\mu * \frac{photons}{sec} * QE\% * time}{\sqrt{\mu^2 * F * (\frac{photons}{sec} + \frac{BG \ photons}{sec}) * QE\% * time}}$ Readout Noise $SNR \cong \frac{\frac{photons}{sec} * QE\% * time}{\sqrt{F * (\frac{photons}{sec} + \frac{BG photons}{sec}) * QE\% * time}}$ Background offset + BG Shot Noise 300.0E+6 300.0E+6 300.0E+6 300.0E+6 Output e Dark e gnal e 250.0E+6 250.0E+6 250.0E+6 250.0E+6 200.0E+6 200.0E+6 200.0E+6 200.0E+6 150.0E+6 150.0E+6 150.0E+6 150.0E+6 100.0E+6 100.0E+6 100.0E+6 100.0E+6 50.0E+6 50.0E+6 50.0E+6 50.0E+6 000.0E+0 000.0E+0 000.0E+0 000.0E+0 0.5 0.5 1 0 0.5 0 1 0 1 0 0.5

Dominant Noise Sources

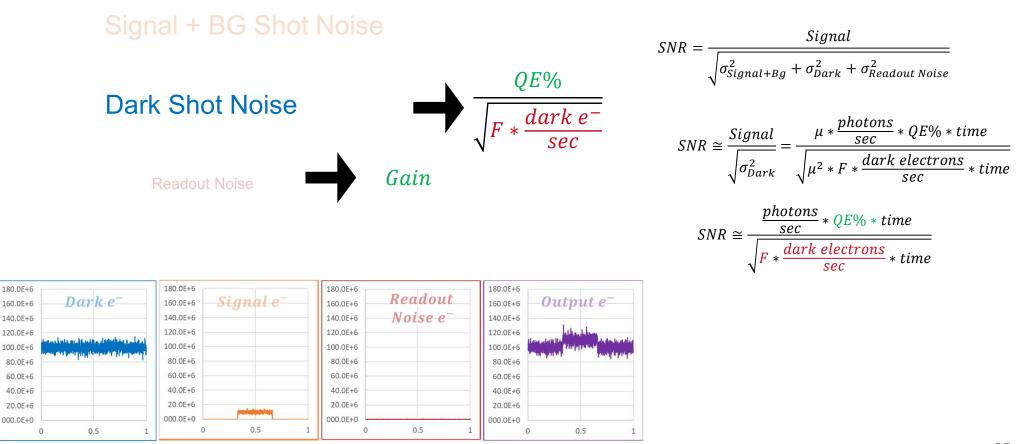
Optical Considerations for Reducing Background

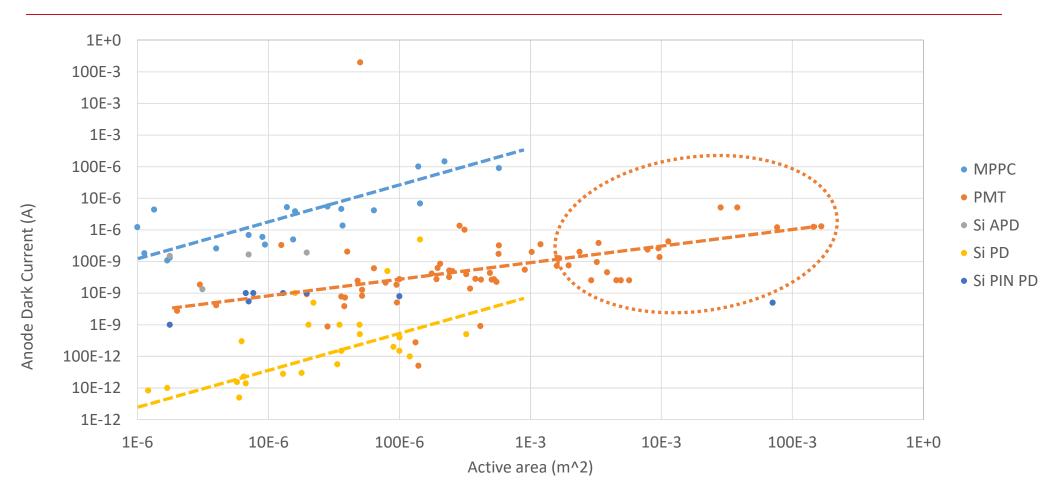
HAMAMATSU

HAMAMATSU

PHOTON IS OUR BUSINESS

Noise Sources: $\sqrt{\frac{QE\%}{F}} \qquad NR = \frac{Signal}{\sqrt{\sigma_{Signal+Bg}^2 + \sigma_{Da}^2 + \sigma_{Readout Noise}^2}}$ Signal + BG Shot Noise **Dark Shot Noise** $SNR \cong \frac{Signal}{\sqrt{\sigma_{Signal+B}^{2}}} = \frac{\mu * \frac{photons}{sec} * QE\% * time}{\sqrt{\mu^{2} * F * (\frac{photons}{sec} + \frac{Bg \ photons}{sec}) * QE\% * time}}$ Gain Readout Noise $SNR \cong \frac{\frac{photons}{sec} * QE\% * time}{\sqrt{F * (\frac{photons}{sec} + \frac{BG \ photons}{sec}) * QE\% * time}}$ 180.0E+6 180.0E+6 180.0E+6 180.0E+6 Readout Signal e⁻ Output e⁻ 160.0E+6 160.0E+6 160.0E+6 160.0E+6 Noise e⁻ 140.0E+6 140.0E+6 140.0E+6 140.0E+6 120.0E+6 120.0E+6 120.0E+6 120.0E+6 100.0E+6 100.0E+6 100.0E+6 100.0E+6 80.0E+6 80.0E+6 80.0E+6 80.0E+6 60.0E+6 60.0E+6 60.0E+6 60.0E+6 40.0E+6 40.0E+6 40.0E+6 40.0E+6 20.0E+6 20.0E+6 20.0E+6 20.0E+6 000.0E+0 000.0E+0 000 0F+0 000.0E+0 0.5 0.5 0.5 0.5 0 0 1 0 1 0 1 1


Dominant Noise Sources


HAMAMATSU

PHOTON IS OUR BUSINESS

Dominant Noise Sources

Noise Sources:

Dark Signal vs. Size

MPPC (SiPM) **PMT** Photodiode Calculated Value Typical Dec.2005 Dark Current vs. Temperature PMT Temperature vs Dark Count 1.0E+07 Vr=10mV Type: S2592-03 10000 GaAs GaAsP 1000 1.0E+06 Dark Count [1/s] DCR (cps) Dark Current (pA) 100 0.1 1.0E+05 10 0.01 -15 -10 -5 5 10 15 20 25 30 0 -20 -15 -10 -5 0 5 10 15 20 25 30 1.0E+04 Temperature ($^{\circ}$ C) PMT Temperature [deg.C] 30 -20 -10 0 10 20 40 50 Temperature (°C) S2592 S13362 C13852 C13366 H7422 H10330C C12843 S3477 S14422 C14455 H7421 C14456

Reducing Dark Noise with Cooling

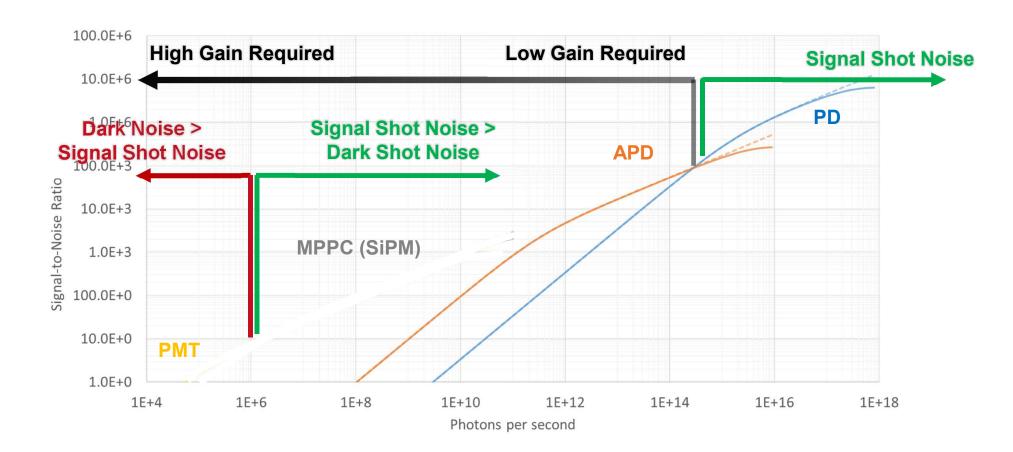
 ${\ensuremath{\mathbb O}}$ Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 87

HAMAMATSU

PHOTON IS OUR BUSINESS

Summary Detector Selection Process

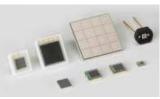
Calculate using typical PD specification: Readout Calculate Yes Signal Noise is required Start Signal Shot Noise significant Gain **Dark Shot Noise** . ? Readout Noise Maximize No *QE*% Choose detector: F PD, PIN PD, or Phototube Choose detector*: Photon or APD *If required SNR too low Photon Shot Noise is dominant **Dark Shot** PMT => Photon counting Noise is MPPC (SiPM) dominant Maximize **QE**% Dark Shot Noise is dominant *If required gain is too high dark e⁻ => Photon counting etc. sec


HAMAMATSU

 ${\scriptstyle \mathbb{O}}$ Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. \$88\$

HAMAMATSU

PHOTON IS OUR BUSINESS

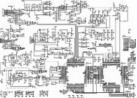

Other Things to Consider

HAMAMATSU

Photodetector

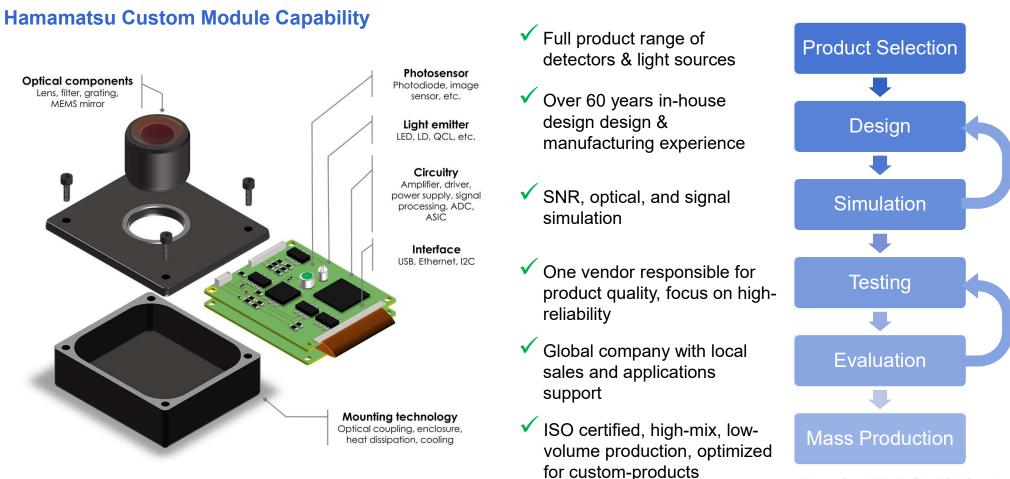
- QE%
- Dark Noise
- Speed
- Dynamic Range
- Size
- Cost

Optics


- Efficiency
- Size
- Cost

Electronics

- Noise
- Heat
- Speed
- Complexity
- Cost


Integration

- Enclosures
- Power consumption
- Reliability testing
- Supply-chain

Module Integration

HAMAMATSU

Additional Resources

Simulators		
Analog SNR	https://hub.hamamatsu.com/us/en/interactive_tools/analog-snr-simulator/index.html	
Photon Counting SNR	https://hub.hamamatsu.com/us/en/interactive_tools/photon-counting-snr-simulator/index.html	
Camera SNR & Image	https://www.hamamatsu.com/sp/sys/en/camera_simulator/index.html	

Technical Notes		
Photomultipler Tube Handbook	https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v4E.pdf	
Opt-Semiconductor Handbook	https://www.hamamatsu-news.de/hamamatsu_optosemiconductor_handbook	
Opto-Semiconductor Resources (App notes, tech notes, and selection guides)	https://www.hamamatsu.com/sp/ssd/doc_en.html	
Hamamatsu Hub (Guides, webinars, and tech notes)	https://hub.hamamatsu.com/us/en/index.html#	
MPPC Technical Note	https://www.hamamatsu.com/resources/pdf/ssd/mppc_kapd9005e.pdf	

Technical Support

Phone: 908-252-7225

https://www.hamamatsu.com/all/en/inquiry/index.html?inqtype=3&tcode=t_bh_ad&pt=Contact%20Information%20for%20the%20Americas

Summary

- Upper limit of SNR is Photon Shot Noise $\sqrt{\frac{photons}{sec}} * T$
- Sampling time: $T = \frac{1}{2R}$ (Narrow Bandwidth improves SNR)
- Gain can improve overall SNR by making Readout Noise less significant.
 - Gain multiplies dark and signal equally, so SNR is not improved if Readout Noise is not major source of noise.
 - Gain can only reduce SNR of the detector by introducing Excess Noise.
 - ENF: APD >> PMT > MPPC ~ 2 - 3 ~ 1.1 - 1.2 ~ 1.05 - 1.1
- Photon counting can be used to measure the lowest light levels by making readout noise and excess noise less significant.
 - Requires very high gain ~10⁶
 - Counting linearity is limited by detector or electronics pulse pair resolution, typ. max count rate ~10⁶ 10⁷
- Signal Shot Noise limited measurement can be improved by increasing QE and reducing Excess Noise
 - Reduce background light
- Dark Shot Noise limited measurement can additionally be improved by reducing dark current/dark count
 - Smaller active area (solid state detectors: PD, APD, MPPC (SiPM)
 - Use PMT (large active area, low dark counts)
 - Cooling the detector

www.hamamatsu.com

Contact Information

Dino Butron dbutron@hamamatsu.com HAMAMATSU PHOTON IS OUR BUSINESS

Join Us for 10 Weeks of FREE Photonics Webinars (17 Topics)

HAMAMATSU

PHOTON IS OUR BUSINES

Week #	Weekly Topics	# of Talks	Talk #1 Date	Talk #2 Date	
1	Introduction to Photodetectors	2	26-May-20	28-May-20	
2	Emerging Applications - LiDAR & Flow Cytometry	2	2-Jun-20	4-Jun-20	
3	Understanding Spectrometer	2	9-Jun-20	11-Jun-20	
1 Weeks Break					
4	Specialty Products – Introduction to Light Sources & X-Ray	2	23-Jun-20	25-Jun-20	
5	Introduction to Image Sensors	2	30-Jun-20	02-Jul-20	
1 Weeks Break					
6	Specialty Products – Laser Driven Light Sources	2	14-Jul-20	16-Jul-20	
7	Image Sensor Circuits and Scientific Camera	2	21-Jul-20	23-Jul-20	
8	Mid-Infrared (MIR) Technologies & Applications	2	28-Jul-20	30-Jul-20	
1 Weeks Break					
9	Photon Counting Detectors – SiPM and SPAD	1	11-Aug-20		
10	Using SNR Simulation to Select a Photodetector	1	18-Aug-20		

To register for other webinars or hear previous webinar recordings, please visit link below: https://www.hamamatsu.com/us/en/news/event/2020/20200526220000.html