

Introduction to Photodetectors (Part II)

Slawomir Piatek

New Jersey Institute of Technology & Hamamatsu Photonics, Bridgewater, NJ (USA)

05.28.2020

Index

- Structure and operation of point photodetectors
- Applications of photodetectors
- Selection of a photodetector

Structure and operation of photodetectors

Point photodetectors

PMT PD APD SiPM

PMT – photomultiplier tube APD – avalanche photodiode

PD – photodiode

SiPM – silicon photomultiplier

PMT

HAMAMATSU PHOTON IS OUR BUSINESS

There are two essential phenomena involved in the operation of a PMT: *extrinsic* photoelectric effect and electron secondary emission.

HAMAMATSU PHOTON IS OUR BUSINESS

"side on" or "opaque" PMT

"head on" or "semitransparent" PMT

Equivalent circuit of a PMT

$$I = P_0 S_K \mu = P_0 S_P$$

- *I* Anode current
- P_0 Incident light power
- S_K Photocathode spectral sensitivity
- S_P Anode spectral sensitivity

 μ – Gain

Terminal capacitance C does not depend on the size of the active area; it is on the order of tens of pF. The value of R is very high, $\sim 10^8 \Omega$ and more.

Anode-grounded operation

Anode-grounded operation with a resistive termination and voltage-to-voltage amplifier

Anode-grounded operation with a transimpedance amplifier

Cathode-grounded operation

Cathode grounded operation, common in scintillation-based applications.

Impact ionization

Photodiode

PHOTON IS OUR BUSINESS

The basic structure of a photodiode.

Photodiode

- 1. An incident photon is absorbed in the depletion region resulting in mobile electron and hole
- 2. The built-in electric field causes the hole to drift towards the p region and the electron towards the n region

3. The hole has migrated to the p region and the electron to the n region

4. The electron flows through the connecting wire to recombine with the hole

Equivalent circuit

HAMAMATSU PHOTON IS OUR BUSINESS

Photodiode modes of operation

HAMAMATSU PHOTON IS OUR BUSINESS

$$I = I_0 \left[\exp\left(\frac{qV}{kT}\right) - 1 \right] - I_{ph}$$

(photodiode equation)

$$v_{oc} = \frac{kT}{q} \ln\left(\frac{I_{ph}}{I_0} + 1\right)$$
 (open circuit voltage)

$$I_{sc} \approx I_{ph}$$
 (short-circuit current)

 $I_{ph} = \sigma P$

Open circuit operation

- 1. Output voltage logarithmically proportional to the incident power
- 2. Wide dynamic range
- 3. No dark voltage
- 4. Small bandwidth (large terminal capacitance)

Open-circuit configuration is often used in absorbance measurements.

Short-circuit operation

Short-circuit configuration; anode and cathode are at the same potential. One can make $V_B = V_{ref} = 0$ = ground.

- 1. Output current/voltage is linearly proportional to the input light power
- 2. No dark current
- 3. Limited bandwidth

Short-circuit operation is commonly used in light power meters.

- 1. Bandwidth increases with V_B
- 2. Linear response but dynamic range limited by amplifier saturation
- 3. Dark current
- 4. At high-frequency operation, the TIA may exhibit gain peaking and instabilities.

This is one of the most popular configurations.

Biased operation with a resistive load

1. Simpler noise behavior compared to TIA

- 2. No amplifier saturation
- **3**. Bandwidth/signal amplitude tradeoff (as R_l increases)
- 4. Linearity/signal amplitude tradeoff (as R_l increases)

Capacitor for AC/pulse operation

Avalanche photodiode

HAMAMATSU PHOTON IS OUR BUSINESS

A possible structure of an APD

Avalanche photodiode

- APD is biased below breakdown voltage
- Single photon can lead up to about 100 electronhole pairs
- Avalanche is self quenching
 - Excess noise factor, $F \approx \mu^x$, where $x \approx 0.3 0.4$

HAMAMATSU PHOTON IS OUR BUSINESS

Note how the gain depends on reverse voltage and temperature

Silicon Photomultiplier

SiPM is an array of microcells

Also known as multi-pixel photon counter (MPPC)

SiPM: Structure

All of the microcells are connected in parallel.

Operation

HAMAMATSU PHOTON IS OUR BUSINESS

- The RC time constant of the slow component depends on microcell size (all else being equal)
- The recovery time $t_r \approx 5 \times$ the *RC* time constant
- t_r is on the order of 10s to 100s of ns but in practical situations it is also a function of the detection bandwidth

Crosstalk

Primary discharge can trigger a secondary discharge in neighboring microcells. This is crosstalk.

Crosstalk probability depends on overvoltage.

SiPM: Gain

HAMAMATSU PHOTON IS OUR BUSINESS

Example of single-photoelectron waveform (1 p.e.)

Gain = area under the curve in electrons

$$\mu = \frac{(V_{BIAS} - V_{BD})C_J}{e} = \frac{\Delta V \cdot C_J}{e}$$

 $F \approx 1 + P_{ct}$

Importance of intrinsic gain

$$\frac{S}{N} = \frac{P \cdot \sigma \cdot \mu}{\sqrt{2eB[(P + P_B)\sigma + I_D]F\mu^2 + \frac{4kTB}{R}}} = \frac{P \cdot \sigma}{\sqrt{2eB[(P + P_B)\sigma + I_D]F + \frac{4kTB}{R\mu^2}}}$$

If μ is very large

$$\frac{S}{N} = \frac{P \cdot \sigma}{\sqrt{2eB[(P + P_B)\sigma + I_D]F}}$$

Intrinsic gain suppresses noise contribution to S/N from the front-end electronics.

намаі

PHOTON IS OUR BUSINESS

Modes of operation

HAMAMATSU PHOTON IS OUR BUSINESS

Photon counting

$$\frac{S}{N} = \frac{n_S \sqrt{T_{exp}}}{\sqrt{n_S + 2(n_B + n_D)}}$$

 T_{exp} – measurement time

 $n_S = n_{tot} - (n_B + n_D)$

 n_{tot} – number of counts per unit time due to "science" light, background light, and dark counts

 n_B – number of counts per unit time due to background light

 n_D – number of counts per unit time due to dark current

All rates are measured with the same exposure time T_{exp}

Applications of photodetectors

Emitted light is slowly-varying, weak, and diffuse

PMT's large active area, low dark current, and high gain make it suitable for this application

Application where a PMT is not Ideal: time of flight LiDAR

- Δt round-trip time of flight
- d distance to the target
- c speed of light
- n index of refraction

 PMT is not ideal because it is mechanically fragile^{*} and has limited dynamic range.

* Ruggedized models of PMTs exist and are used in oil logging

Application where a Photodiode Excels: absorbance

$$A = -log_{10}\left(\frac{I}{I_0}\right) = ecl$$

High intensity DC light

- A Absorbance; the Beer-Lambert Law
- e Molar absorptivity in L mol⁻¹ cm⁻¹; wavelength dependent
- c Concentration of the compound in mol L⁻¹
- l (Path length of light in the sample in cm)

 Low cost and very high dynamic range make a photodiode a good choice for this application.

Application where a Photodiode is not ideal: dark matter detection

 High dynamic range, intrinsic gain, and wide bandwidth make an APD a good choice for this application

Application where an APD is not Ideal: Oil Logging

- 1. The source emits radiation (e.g., gamma rays or neutrons) into the surrounding rock
- 2. The radiation interacts with the surrounding rock
- 3. The detector detects scattered radiation
- 4. The nature of the radiation provides information about the rock's density, porosity, or chemical composition

 Gain of an APD is very sensitive to changes in temperature, which is a negative for this application.

Application where a SiPM Excels: PET

 Small active area, high intrinsic gain, and good response in blue make a SiPM a good choice for this application.

- Infrared lasers are used for better transmittance through the air
- 2. Knowing the location of the airplane (GPS) and measuring the distance between the plane and the ground, the ground's topography can be determined
 - The distance can be measured using the timeof-flight technique

SiPM has a limited to no response in IR

Selecting a photodetector

Many factors can play a role in the selection process of a photodetector. However, in many cases, the selection can be made using five basic, albeit crucial, criteria: W, I, T, S, and \$.

W – wavelength of light

- I intensity (amount of light or light power)
- T temporal (time characteristic of light: DC, AC, pulse)
- S spatial (spatial distribution of light: diffuse, collimated)
- \$ price

Characteristics of Light: Spectral Composition

In many applications we often deal with monochromatic light.

Characteristics of Light: Intensity

Intensity or irradiance is a measure of the amount of light passing through a unit area A. It can be expressed in number of photons per unit area per unit time or in Watts per unit area.

Characteristics of Light: Temporal

Characteristics of Light: Spatial

Collimated light can be focused with a lens, while diffuse light cannot be.

Selection Based on Wavelength

Photodetector must have photosensitivity at the "science" wavelength.

Examples of spectral sensitivity curves for a photodiode (left) and a PMT. Manufacturers provide such information for a photodetector (type and family).

Given the amount of input science light, the photodetector together with front-end electronics must produce $\frac{s}{N} > 1$. One needs to estimate the expected $\frac{s}{N}$.

Some points to consider:

- 1. A complete estimate of *S/N* should include contribution to noise from the detection circuit (e.g., a resistor or transimpedance amplifier). This contribution becomes less significant for a photodetector with internal gain, and this fact alone is the reason for a gain in a photodetector
- 2. The minimum detectable power is a function of detection bandwidth. Higher bandwidth increases noise and, therefore, increases the minimum detectable power. Alternatively, higher bandwidth lowers *S/N* for a given power of input light.
- **3**. Large bandwidth is desirable if high fidelity is required: the output electrical signal accurately reproduces the input light signal.

- 4. The minimum detectable power for a given bandwidth is always larger than NEP for the same bandwidth.
- 5. Terminal capacitance of the photodetector affects the detection bandwidth: the higher the capacitance, the smaller the bandwidth.
- 6. For the solid-state photodetectors (but not for PMTs), a larger active area causes a larger terminal capacitance, which decreases the detection bandwidth. Consequently, there is a tradeoff between sensitivity and bandwidth or sensitivity and signal fidelity.

For each photodetector, the double arrow gives an approximate range of measurable the incident photon irradiance.

Terminal capacitance as a function of voltage for a photodiode.

- 1. DC light poses no additional restrictions on the photodetector
- For AC and pulsed light, capacitances junction, parasitic, or terminal – matter: their values affect the output signal rise time, time jitter, and detection bandwidth.
- 3. Except for PMTs, terminal capacitance increases with an active area.

- 1. If the level of incoming light is low but the light is nearly collimated, employing focusing optics can increase the incident light power on the detector, and, thus, improve the $\frac{S}{N}$. If, however, the incoming light is diffuse, focusing optics will not increase the incident power (diffuse light cannot be focused); the only other option is to use a detector with a larger active area.
- 2. The tradeoff is a higher dark current in the photodetector, which increases noise and, therefore NEP. As discussed above, in the case of a PD, APD, and SiPM (but not PMT), a larger active area reduces the detection bandwidth due to a larger junction capacitance.

- 1. If the selection process based on WIT\$ did not yet produce a unique and outstanding choice (unlikely but possible), the price may be able the break the tie.
- 2. The prices can vary greatly among the different models of a photodetector in a given family; however, when the typical representatives of the families are compared, the highest to lowest prices are for a PMT, SiPM, APD, and PD.
- 3. This is a price for a stand-alone photodetector. If the potential user needs to design the detection setup from "ground up," the cost of auxiliary equipment such as power supplies, amplifiers, etc. should also be considered

Other Considerations

size, geometrical constraints

dynamic range

time jitter

environmental: humidity, helium rich, corrosive, vacuum, ambient light, etc.

Thank you for listening

Contact information:

piatek@njit.edu

Join Us for 10 Weeks of FREE Photonics Webinars (17 Topics)

Week #	Weekly Topics	# of Talks	Talk #1 Date	Talk #2 Date
1	Introduction to Photodetectors	2	26-May-20	28-May-20
2	Emerging Applications - LiDAR & Flow Cytometry	2	2-Jun-20	4-Jun-20
3	Understanding Spectrometer	2	9-Jun-20	11-Jun-20
1 Weeks Break				
4	Specialty Products – Introduction to Light Sources & X-Ray	2	23-Jun-20	25-Jun-20
5	Introduction to Image Sensors	2	30-Jun-20	02-Jul-20
1 Weeks Break				
6	Specialty Products – Laser Driven Light Sources	2	14-Jul-20	16-Jul-20
7	Image Sensor Circuits and Scientific Camera	2	21-Jul-20	23-Jul-20
8	Mid-Infrared (MIR) Technologies & Applications	2	28-Jul-20	30-Jul-20
1 Weeks Break				
9	Photon Counting Detectors – SiPM and SPAD	1	11-Aug-20	
10	Using SNR Simulation to Select a Photodetector	1	18-Aug-20	

To register and attend other webinar series, please visit link below: https://www.hamamatsu.com/us/en/news/event/2020/20200526220000.html

www.hamamatsu.com