FEATURES
● Wide effective area: 23 mm × 23 mm
● High speed response
● Compact
● Light weight: Approx. 31 g (R11265U series)
 Approx. 74 g (H11934 series)
● With divider circuit (H11934 series)

APPLICATIONS
● High energy physics
● Scintillation counting
● Portable radiation monitor with nuclear identification

Figure 1: Typical spectral response

Figure 2: Typical gain

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office.

Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2019 Hamamatsu Photonics K.K.
Figure 3: Time response (Example)

Figure 4: Single photon counting (Example)

Figure 5: Energy resolution

Typical energy resolution for metal package PMTs
R11265U-200
\(^{57}\text{Co} : 7.4 \% \\
^{137}\text{Cs} : 3.1 \% \\
Scintillator: \(1/2\)\(\times\) \(1/2\) LaBr\(_3\)(Ce)
VOLTAGE DISTRIBUTION RATIO AND SUPPLY VOLTAGE

Electrodes	K	Dy1	Dy2	Dy3	Dy4	Dy5	Dy6	Dy7	Dy8	Dy9	Dy10	Dy11	Dy12	P	
Standard divider type	2.5	1.3	0.8	0.8	1	1	1	1	1	1	1	1	1	0.5	
Tapered divider type	3.3	1.6	1	1	1	1	1	1	1	1	1	1	1	2.7	1.3

Supply voltage: 900 V, K: Cathode, Dy: Dynode, P: Anode

Anode characteristics

<table>
<thead>
<tr>
<th>Anode to cathode supply voltage (V)</th>
<th>Luminous (A/lm)</th>
<th>Gain</th>
<th>Dark current (A)</th>
<th>Rise time (ns)</th>
<th>Transit time (ns)</th>
<th>T.T.S. (mA)</th>
<th>Pulse linearity</th>
<th>Operating ambient temperature (°C)</th>
<th>Storage temperature (°C)</th>
<th>Type No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min. (A/lm)</td>
<td>Typ. (A/lm)</td>
<td>Typ. (A)</td>
<td>Typ. (ns)</td>
<td>Typ. (ns)</td>
<td>Typ. (mA)</td>
<td>Typ. (mA)</td>
<td>±2 % Deviation</td>
<td>±5 % Deviation</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>50 (20)</td>
<td>130</td>
<td>1.2 × 10⁶</td>
<td>2</td>
<td>20</td>
<td>0.27 (0.27)</td>
<td>20</td>
<td>60</td>
<td>-30 to +50</td>
<td>R11265U-100</td>
</tr>
<tr>
<td>900</td>
<td>50 (20)</td>
<td>130</td>
<td>1.2 × 10⁶</td>
<td>2</td>
<td>20</td>
<td>0.27 (0.27)</td>
<td>20</td>
<td>60</td>
<td>-30 to +50</td>
<td>R11265U-200</td>
</tr>
<tr>
<td>900</td>
<td>50 (20)</td>
<td>130</td>
<td>1.2 × 10⁶</td>
<td>2</td>
<td>20</td>
<td>0.27 (0.27)</td>
<td>20</td>
<td>60</td>
<td>-30 to +50</td>
<td>R11265U-300</td>
</tr>
<tr>
<td>-900</td>
<td>50 (20)</td>
<td>130</td>
<td>1.2 × 10⁶</td>
<td>2</td>
<td>20</td>
<td>0.27 (0.27)</td>
<td>20</td>
<td>60</td>
<td>0 to +50</td>
<td>H11934-100</td>
</tr>
<tr>
<td>-900</td>
<td>50 (20)</td>
<td>130</td>
<td>1.2 × 10⁶</td>
<td>2</td>
<td>20</td>
<td>0.27 (0.27)</td>
<td>20</td>
<td>60</td>
<td>-15 to +50</td>
<td>H11934-200</td>
</tr>
<tr>
<td>-900</td>
<td>50 (20)</td>
<td>130</td>
<td>1.2 × 10⁶</td>
<td>2</td>
<td>20</td>
<td>0.27 (0.27)</td>
<td>20</td>
<td>60</td>
<td>-15 to +50</td>
<td>H11934-300</td>
</tr>
<tr>
<td>-900</td>
<td>50 (20)</td>
<td>130</td>
<td>1.2 × 10⁶</td>
<td>2</td>
<td>20</td>
<td>0.27 (0.27)</td>
<td>20</td>
<td>60</td>
<td>-15 to +50</td>
<td>H11934-100-10</td>
</tr>
<tr>
<td>-900</td>
<td>50 (20)</td>
<td>130</td>
<td>1.2 × 10⁶</td>
<td>2</td>
<td>20</td>
<td>0.27 (0.27)</td>
<td>20</td>
<td>60</td>
<td>-15 to +50</td>
<td>H11934-200-10</td>
</tr>
<tr>
<td>-900</td>
<td>50 (20)</td>
<td>130</td>
<td>1.2 × 10⁶</td>
<td>2</td>
<td>20</td>
<td>0.27 (0.27)</td>
<td>20</td>
<td>60</td>
<td>-15 to +50</td>
<td>H11934-300-10</td>
</tr>
</tbody>
</table>

() : Measured with the special voltage distribution ratio (Tapered Divider) shown below.

Figure 6: T.T.S. characteristic (Example)

![Figure 6: T.T.S. characteristic](image1)

SUPPLY VOLTAGE: -900 V

FWHM: 0.27 ns

STANDARD DIVIDER

COUNTS

TIME (1 ns/div)

Figure 7: Effect of magnetic fields on anode output (Example)

![Figure 7: Effect of magnetic fields on anode output](image2)

SUPPLY VOLTAGE: -900 V

STANDARD DIVIDER

Z-AXIS

Y-AXIS

X-AXIS

MAGNETIC FLUX DENSITY (mT)

RELATIVE OUTPUT

TIME (1 ns/div)

Figure 8: Dimensional outline and basing diagram (Unit: mm)

- **R11265U series**

 ![Dimensional outline and basing diagram](image3)
WARNING – High voltage –

The product is operated at high voltage potential. Further, the metal housing of the product is connected to the photocathode (potential) so that it becomes a high voltage potential when the product is operated at a negative high voltage (anode grounded). Accordingly, extreme safety care must be taken for the electrical shock hazard to the operator or the damage to the other instruments.

* C13890 series can be used for R11265U series / H11934 series.