Stealth Dicing Technical Information for MEMS
"Stealth dicing features" that will completely rewrite conventional dicing concepts

<table>
<thead>
<tr>
<th>Processing method</th>
<th>Grinding cutting and process</th>
<th>Surface absorption laser process (melting, evaporation)</th>
<th>Internal absorption laser process (locally selective)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (cooling / cleaning)</td>
<td>Required</td>
<td>Required</td>
<td>Not required</td>
</tr>
<tr>
<td>Chipping</td>
<td>Occurs</td>
<td>Occurs</td>
<td>Does not occur</td>
</tr>
<tr>
<td>Debris generation</td>
<td>Generates</td>
<td>Generates</td>
<td>Does not generate</td>
</tr>
<tr>
<td>T-shape and round shape dicing</td>
<td>Not possible</td>
<td>Possible in certain cases</td>
<td>Possible</td>
</tr>
<tr>
<td>High-speed ultra-thin wafer dicing</td>
<td>Might be possible in certain cases</td>
<td>Possible in certain cases</td>
<td>Possible</td>
</tr>
<tr>
<td>Chip yield</td>
<td>Not so good</td>
<td>Not so good</td>
<td>Good</td>
</tr>
<tr>
<td>Processing speed</td>
<td>Not so good</td>
<td>Not so good</td>
<td>Good</td>
</tr>
<tr>
<td>Thermal effect on device</td>
<td>Affected (including residual stress)</td>
<td>Affected (HAZ*)</td>
<td>Not affected</td>
</tr>
</tbody>
</table>

* HAZ: Heat Affective Zone
Various different kinds of technologies such as mechanical engineering, quantum mechanics, electrical engineering, chemistry, and optics that were thought of as different fields until recently were merged on a semiconductor fabrication process as micromachining technology. This new technology offers tremendous possibilities that are starting to gather much attention. This technology has gradually grown along with the spread of etching technology since it could freely form thin film structures, girders and hollow structures with fine accuracy to the micro level on wafers. These capabilities appealed to the imaginations of MEMS (micro electro mechanical system) designers who are now starting to create totally new functional devices.

Stealth dicing is a completely new laser dicing technology. Stealth dicing offers amazing advantages since it is a "completely dry process" yet generates "no debris" and has "zero kerf loss". This technology was especially developed for the purpose of high-speed yet high-quality dicing of ultra-thin semiconductor wafers and its features are equally effective in dicing processes for MEMS devices. Stealth dicing is already being used for mass producing MEMS devices and is on its way to becoming an industry standard for MEMS device production.

This technical material covers problems encountered in MEMS dicing as well as principles and processes involved in stealth dicing technology. It also offers a brief look at trends in developing new types of stealth dicing for use on materials other than silicon.

2. Problems with dicing in MEMS fabrication processes

2.1 Grinding wheel type blade dicing

Major problems that must be avoided during dicing of MEMS devices with fragile structures include contamination and stress loads on the functional elements. The following are inevitable problems with the dicing process used in typical blade dicing processes.

1. Problem with wet processes
 - Fluid pressure applies stress loads on the structure due to use of cooling water and rinse water during dicing.
 - Functional elements are re-contaminated by foul cutting fluid
 - Requires adding a protective film for protecting device structures from water and foul water as well as a process to remove that film

2. Problems with contact type processes
 - Contact type cutting processes apply a vibrating load to the structure

Figure 1 shows problems that occur when an MEMS device having a membrane structure is cut by blade dicing. Photo 1 shows damage to membrane structures due to fluid pressure during blade dicing.

Photo 1: Membrane damage due to fluid pressure
2.2 Making dicing a completely dry process
When dicing an MEMS device, dicing technology is needed that applies minimal stress to the delicate structures inside the MEMS device. At the same time, some measures are also needed to prevent the device structures from particle recontamination. These problems can be eliminated by switching to a dicing process with the following features:

1. Fully dry processing: Prevents defects caused by wet process and reduces man-hours needed for production/inspection

2. Non-contact dicing process: Eliminates stress applied to the device structures due to vibration accompanying the cutting process

Stealth dicing offers both these features 1 and 2 described above.

In dicing technology using lasers, the ablation method has long been studied as a laser process method. Laser ablation, however, produces debris contaminants during processing so pre-processing is needed to coat a protective film for protecting the device structures from these contaminants, and post-processing such as wet washing is also required.

The next section briefly describes how stealth dicing is performed in a completely dry process.

3. Stealth dicing technology

3.1 Basic principle of stealth dicing
In stealth dicing, a laser beam at a light wavelength semitransparent to the material is focused on a point inside that material to form a cleaving start point (transformed area: hereafter called SD layer), and external pressure then applied to the wafer to separate it into multiple chips.

This technology therefore includes two processes. One is a "laser process" to form a cleaving start point (SD layer) on the interior of the wafer for separating it into chips; and the other is a "separation process" to divide the wafer into small chips. Figure 2 above shows an overview of the laser process.

1. Step 1 - Laser process
A laser beam is focused on points inside the wafer to form an SD layer for cutting the wafer. Cracks are also formed on this SD layer in the interior of the wafer, which extend towards both surfaces of the wafer. These cracks are an indispensable element for dividing the wafer into chips and should not twist broadly around the chip or be prevented from developing towards both surfaces. When cutting a thick silicon wafer device such as MEMS devices, it is the most important step to form SD layers and joint them vertically while making multiple scans depth-wise in the wafer, so that an optimal SD layer for cutting is formed.

How these cracks relate to the SD layer is shown in Figure 3, along with the three states that we should understand for deciding the processing conditions.

SD layers can be made into the three states according to the purpose and application. These states can be combined to form an ideal combination. Optimal processing conditions can be found via the device state such as the wafer thickness, chip shape, and whether a metallic film is used, etc. Once these conditions are found they can be systematized in a database for use according to the particular user and device.

Figure 2: Step 1 - Laser process

Figure 3: Interrelation of SD layer and cracks formed in laser process
An overview of the “separation process” is next shown in Figure 4.

Step 2 - Separation process
Expanding a tape-mounted wafer already formed with an SD layer towards the periphery of the wafer applies a tensile stress to the internal cracks in the wafer. This stress causes the internal cracks to develop towards both surfaces of the wafer and separates the wafer into small chip shapes.

Figure 5 shows a schematic view of the process up to separating the wafer into chips by extending the SD layer cracks formed inside the wafer.

Forming an HC (half-cut) or a BHC (bottom side half-cut) during forming of the SD layer will make it easier to separate the wafer into chips. When the tape is then expanded towards the periphery of the wafer while in this state, the HC or BHC surface is pulled towards the wafer periphery, so that a pulling or tensile stress propagates along the wafer and the stress concentrates at the tip of the crack. This concentrated stress causes the crack to instantaneously reach the wafer surface, and the wafer then splits into small chips.

Photo 2 shows a cross section of an MEMS chip having a membrane structure that was cut by stealth dicing. Both the front and back surfaces of the chip have sharp and clean dicing lines with no chipping. The membrane structure in the chip center section also shows good quality dicing with no traces of damage or debris that known to cause defects. The tape expansion process effectively applies stress to the crack tips without causing mutual interference with chips adjacent to each other.
3.2 Internal-process laser dicing versus surface-process laser processing

The difference between stealth dicing and ordinary laser surface process is briefly described next. Photo 3 shows processing results when using different laser focus positions. This photograph allows comparing results from surface process by focusing the laser beam on the surface of a wafer with results from focusing the laser beam on an internal point of the wafer.5)

A unique feature of stealth dicing is that the laser beam first irradiates an internal point in the material and starts cutting from that point. This cutting principle is clearly different from the surface ablation method that carves a groove on the wafer by making the laser beam be absorbed in the surface of the material. Stealth dicing is a clean cutting technology that emits no molten particles such as silicon dust onto the wafer surface during laser process. The range of thermal effects from laser process in terms of heat distribution on the internal and front surface reportedly differs greatly according to the laser beam depth.6) Directing the laser beam on the interior of the wafer during laser process was found more effective in keeping a small heat distribution area than the conventional surface-focused laser process.

Photo 3: Comparing stealth dicing (internally focused laser dicing) with laser surface process
3.3 Range of thermal effects on MEMS devices during internal laser process

The first area of concern during laser dicing process is what thermal effects the laser process will have on the active area. Making a localized measurement of the actual temperature during laser process is not an easy task. Here we briefly discuss the internal temperature distribution in silicon during stealth dicing by using a report from a simulation made to analyze thermal effects in silicon material based on temperature dependence of the laser light absorption coefficient in monocrystalline silicon material.

Figure 6 shows results derived from a thermal simulation analyzing the heat distribution within silicon material at each pulse near the focused beam point during laser process to form an SD layer. This was performed by focusing the laser beam at a position whose depth is 60 µm from the surface of a 100 µm thick silicon wafer. Examining the maximum temperature distribution range in Figure 6 shows that the range where the temperature in the silicon rises 200 °C or higher during laser process is confined within ±7 µm centered laterally around the laser beam point.

Figure 7 shows these results applied to an actual device wafer. On a typical device wafer, the width of the so-called dicing street is about 50 µm to 70 µm. A look at Figure 7, however, shows that the thermally affected area remains small during stealth dicing compared to a typical dicing street. This shows that stealth dicing technology is capable of narrower dicing streets which in turn will allow a greater chip yield per wafer.

Figure 6: Temperature distribution range within the silicon wafer per laser pulse

Figure 7: Thermally affected area when forming SD layer
3.4 Checking thermal effects on device characteristics

Effects on characteristics of an actual device wafer were next verified. A photosensor (photodiode) was used to verify device characteristics. In this verification method, two types of samples were fabricated with respective distances "d" of 10 µm and 150 µm from the device active area to the cut edge of the chip. The extent of thermal effects from the laser process during stealth dicing were then investigated.

The photodiode’s dark current characteristics were investigated by blocking the photosensitive area, applying a reverse bias and measuring the leakage current.

- **THB (Temperature Humidity Bias) test**
 - Humidity and temperature were set to 85 % / 85 °C for a 500 hour period.

- **Temperature cycle (TC test)**
 - Performed for 100 cycles from -55 °C to 125 °C.

- **Photodiode**
 - Plastic package type
 - Chip size: 2 mm × 2 mm, chip thickness: 100 µm

Figure 8 shows the THB test results. The dark current is about 0.1 nA at a Vr of 10 V or less. At a Vr higher than 10 V, the dark current rapidly increases and reaches a breakdown threshold. The dark currents were each 0.1 nA and 0.2 nA at d (distances) of 150 µm and 10 µm. The dark current only increased a mere 0.1 nA even if the distance from the chip cut edge to the active area was changed to 10 µm from 150 µm. The figure also shows there was virtually no change in the test results after 500 hours compared to the initial state.

Figure 9 shows results from the TC test. Here also there was almost no change in the dark current value after 100 cycles of TC testing even compared to the initial state.

These results prove that stealth dicing laser process is a technology that exerts no large effects on device service life and durability. This verifies the heat analysis simulation results in Figure 6 where the area heated to 200 °C or higher was limited to ±7 µm in radius, and also bears out the fact that there are no effects on device characteristics due to heat when the device is diced at a position 10 µm away from the active area. However, these tests do greatly affect the device structure, so the actual effects should be verified on each device that will be actually used.
3.5 Limitations when using stealth dicing

Due to its operating principle, stealth dicing is subject to the following limitations. The laser beam is usually irradiated from the device surface to machine it internally (front-side irradiation method). However, it is difficult to guide the laser beam onto the front surface of wafers when a light-blocking metallic film is formed there. In this case, the interior of those wafers is machined by irradiating the laser beam from the back surface (backside irradiation method). Table 1 summarizes laser irradiation method according to the state of the device wafer.

Table 1: Laser irradiation methods per device structure

<table>
<thead>
<tr>
<th>Limitations when using front-side irradiation method</th>
<th>Limitations when using backside irradiation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEG/metallic film on dicing street</td>
<td>Wafer clamping method</td>
</tr>
<tr>
<td>These should not be present.</td>
<td>Special SD dicing tape is attached to the wafer backside and stealth dicing performed through the tape. However, if this is not possible, then the wafer can be clamped on a suction table and stealth dicing performed from the wafer backside, and tape can be attached to the wafer on the suction plate.</td>
</tr>
<tr>
<td>Protective film on dicing street</td>
<td>Backside grinding roughness</td>
</tr>
<tr>
<td>No problem with SiO₂.</td>
<td>#2000 or more</td>
</tr>
<tr>
<td>The SiN film thickness affects AF characteristics and processing. Consultation is required.</td>
<td>BOX layer attenuates the laser beam power which causes a drop in the throughput time. Removing the BOX layer may improve the throughput time.</td>
</tr>
<tr>
<td>Street width</td>
<td>SOI wafer</td>
</tr>
<tr>
<td>Since the SD laser beam has an incident angle, non-light-shielded area is required to guide the beam according to wafer thickness.</td>
<td>BOX layer attenuates the laser beam power which causes a drop in the processing time. Removing this BOX layer may improve the throughput time.</td>
</tr>
<tr>
<td>SOI wafers</td>
<td></td>
</tr>
<tr>
<td>BOX layer attenuates the laser beam power which causes a drop in the throughput time. Removing the BOX layer may improve the throughput time.</td>
<td></td>
</tr>
</tbody>
</table>

When dicing an MEMS device wafer, some method is also needed to clamp the wafer if using the backside irradiation method. When clamping the device surface of a wafer containing this type of delicate structures to a vacuum chuck table (suction plate), porous sheets with good cushioning should be used to hold both sides of the device on the suction plate. Using a special dicing tape that allows the SD laser wavelength to easily transmit through will allow forming an SD layer inside the silicon through the tape while the wafer backside is held by the tape. The remainder of the process is extremely simple. The wafer is removed from the suction plate while still mounted with the tape, and then tape is expanded to separate the wafer into chips in a simple and easy step. Figure 10 shows a concept view of this backside irradiation method.

New advances being made in peripheral technologies will make stealth dicing the ideal solution for all types of devices.
4. Stealth dicing boosts profits

Besides making MEMS devices more reliable, stealth dicing offers technology advantages with new added values that make business more profitable.

4.1 Benefits from a 10 µm kerf width

One important technical advantage is the chip yield obtained from one wafer. Stealth dicing is a cleaving technology and therefore offers the overwhelming advantage of having absolutely no cutting area. Even if we consider the chip edge straightness during wafer separation, which is usually 2 µm to 3 µm, the dicing street width required by this technology is a maximum of ±5 µm. This means that the chip yield from a single wafer can be drastically increased. Table 2 shows the chip profit calculated by using a 10 µm wide dicing street made possible by stealth dicing. Preconditions for this calculation are a wafer diameter of 152 mm, a chip size of 2 mm × 2 mm and a conventional blade dicing street width of 80 µm. The increased chip yield per wafer from shrinking the dicing street width was first found, and the profit then calculated assuming a cost of 30 yen per chip. Based on a monthly production of 2000 wafers and so an annual production of 24,000 wafers, an extra chip yield equivalent to 190 million yen can be obtained. In more realistic terms, the target production figure can be reached while using fewer wafers because of the increased chip yield per wafer. Converting using the above figures yields a figure of 1585 wafers annually.

If irradiating the wafer with laser from the backside, then the laser beam spread should be taken into account. It is therefore necessary to find an area larger than 10 µm, where there is no metallic film that blocks the laser beam.

Table 2: Calculated profit from a 10 µm street width

<table>
<thead>
<tr>
<th></th>
<th>Blade dicing</th>
<th>Stealth dicing</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work size</td>
<td>152</td>
<td>0.01</td>
<td>mm</td>
</tr>
<tr>
<td>Dicing street width</td>
<td>0.08</td>
<td>2 × 2</td>
<td>mm</td>
</tr>
<tr>
<td>Chip size</td>
<td>3732</td>
<td>264</td>
<td>pcs</td>
</tr>
<tr>
<td>Effective number of chips</td>
<td>—</td>
<td>107.1</td>
<td>%</td>
</tr>
<tr>
<td>Increased number of chips / wafer</td>
<td>—</td>
<td>190,080,000</td>
<td>yen</td>
</tr>
<tr>
<td>Improved yield</td>
<td>—</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Benefits when dicing irregular chip shapes

Stealth dicing is also effective on chips containing T sections or curves. Stealth dicing also allows improving the chip yield per wafer by arranging chips in zigzag layouts. It also proves effective, for example, on wafers such as TEG wafers where one mask is used to form as many different chip patterns as possible. Besides linear process, stealth dicing can also be used for dicing round shapes.

Figure 11 shows forming of dicing patterns for different chip sizes. Because of the different 2 mm and 10 mm square chip sizes, the dicing lines on the edges of 10 mm square chips do not intersect and form a T shape.

No SD layers are formed by turning off the laser beam at the timing when the laser beam reaches each T section, allowing selectively the wafer in 2-dimensions. Controlling the laser beam to turn on and off in this way makes it possible to dice even non-consecutive device patterns. The on/off positions can be controlled with high precision, allowing accurate dicing within ±25 µm even at stage speeds up to 300 mm per second.

![Figure 11: Mixed pattern containing both 2 mm and 10 mm square chips](image-url)
Photo 4 shows results from stealth dicing on a wafer with different chip sizes in Figure 11. Only 3 locations of the T section are shown because of the limited space available here.

Photo 5 shows stealth dicing of free sizes on a silicon wafer. As can be seen here, stealth dicing can cut both curves and triangular shapes and the machined quality of the sliced cross section is the same as normal stealth dicing.

Photo 4: T-shape dicing example

Photo 5: Free size dicing

5. Dicing materials other than silicon

Stealth dicing also works on other materials besides silicon. Here are some example of dicing other materials which are currently under development.

5.1 Glass wafers

Glass materials currently being used include quartz glass, borosilicate glass (such as BK7), pyrex, and non-alkali glass, etc. Dicing of soft and hard glass materials is also under study. Glass wafers often be diced while laminated over a silicon wafer, so one method proposed for those cases forms an SD layer on each material by irradiating laser light for silicon material from the silicon substrate side, and laser light for glass material from the glass substrate side while simultaneously applying stress to separate the wafer into small chips.

Photo 6 shows samples cut from an actual glass wafer by stealth dicing. These samples still have problems with the cutting quality. Namely, the edge straightness on the front surface where the chip edges were cut tends to weave back and forth about ±15 μm. Compared to silicon wafers where the cutting accuracy is about ±2 μm on both front and back surfaces, glass wafers still need improvements to increase their precision.

Photo 6 (a): Surface of glass chip cut from glass wafer

Photo 6 (b): Cross section of glass chip cut from glass wafer
5.2 Roadmap to future stealth dicing technology

Work on developing products from materials other than silicon is in progress according to the schedule below. MEMS devices made from wafers other than silicon are already under evaluation. Demands are rising for products requiring stealth dicing of wafers made from glass and other compounds. Many problems still remain unsolved for using stealth dicing with glass materials, so development work will require significant time. However, the pace of development work aimed at commercial products is accelerating. Table 3 shows a current developmental roadmap for new type SD engines.

Table 3: Developmental roadmap for SD engines

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapphire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical strengthening glass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LiTaO₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LiNbO₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaAs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ga₂O₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystalline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* We plan to develop an engine compatible with new materials and multiple materials.

* We plan to develop a new engine comprehensively improves your COO (Cost of Ownership) by reducing cycle time and cost.

TLASCOOLED
6. How green-friendly stealth dicing improves our environment

Mounting stealth dicing engines in equipment cuts their power consumption by 68% (under fixed processing conditions). A main feature of stealth dicing is that it is a completely dry process and so needs no pure water. Figuring in the savings from eliminating pure water production and waste water processing gives a drop in power consumption of 77%. This helped earn stealth dicing the "Superior Energy-Saving Machines" award from the Japan Machinery Federation (JMF) in February 2007. (Awarded to Tokyo Seimitsu Co., Ltd.).

The graph in Figure 12 shows the degree of environmental or green-friendly contribution rendered by stealth dicing.

Let’s assume that 1000 blade dicing units were replaced with stealth dicing units, the reduction in carbon dioxide (CO2) would be equivalent to 17,000 tons or equivalent to the natural cleansing effect of 1 million 270,000 trees (cedar trees). Trial calculations also show the quantity of required ultrapure water could be slashed by 6 million tons.

The tremendous impact in positive environmental effects from installing stealth dicing engines in equipment is one marker that a semiconductor manufacturer is truly "Aware of energy and the environment". So using stealth dicing in the wafer dicing process is a huge status mark for semiconductor manufacturers because it shows they are doing their share to cut harmful loads on the environment and stay green-friendly.

![Figure 12: Scale showing how stealth dicing helps our environment](image)
7. Conclusion

MEMS devices such as microactuators, silicon microphones, RF MEMS, and optical MEMS devices are already being actively used in diverse fields. As the markets for these devices steadily expand, more technical innovations will be needed from a management perspective to boost productivity and production efficiency as well as giving MEMS devices more functions and higher value. Stealth dicing was originally developed to solve the serious problems faced when trying to dice ultra-thin silicon devices such as semiconductor memories with conventional technology. So when dicing comparatively thick silicon products such as MEMS devices, stealth dicing must form multiple SD layers along the wafer depth. However, forming these multiple SD (stealth dicing) layers takes time and reduces the product throughput. Future work will therefore concentrate on developing machining processes and hardware for improving the throughput of thick silicon wafers as well as expanding the range of devices where stealth dicing can be used.

Patents (as of April 1, 2013)
- USA: USP 6992026, 7396742, etc. (a total of 48 patents), and 62 patents pending
- Japan: Patent Nos. 3408805, 3626442, 3761565, 3761567, 3761566, 3624909, 3670267, 3790254, 3822626, 3762409, 3867003, 3867107, 3867109, 3867110, 3867101, 3867102, 3867103, 3867100, 3867104, 3867105, 3869850, 3751970, 3867108, 3935187, 3935188, 3990710, 3935186, 3935189, 3990711, 4050534 (a total of 120 patents), and 70 patents pending
- Taiwan: Patent Nos. I250060, I270431, I269890, I278027, etc. (a total of 32 patents), and 54 patents pending
- Europe (EC): Patent No. 1632997, etc. (a total of 28 patents), and 63 patents pending
- China: A total of 62 patents, and 36 patents pending
- Other Countries: Including patents pending in Thailand, Malaysia, India, Philippines, Singapore, and Israel etc.

References
- E. Ohmura, F. Fukuyo, K. Fukumitsu, and H. Morita, "Internal modified-layer formation mechanism into silicon with nano second laser", J. Achievement in Materials and Manufacturing Engineering, 17, 381-384 (July-August 2006)
SDE (Stealth Dicing) is a registered trademark of Hamamatsu Photonics.

* The contents of this document are current as of MAR, 2014. The contents are subject to change without prior notice due to improvement.