測距イメージセンサ
S11961-01CR, S11962-01CR, S11963-01CR, S12973-01CT

目次
1. 特長... 2
2. 構造... 2
3. 動作原理.. 4
 3-1. 位相差 (間接)TOF (Time-of-Flight) ... 4
 3-2. タイミングチャート.. 6
 3-3. 電荷排出機能.. 7
 3-4. 非破壊読み出し... 8
 3-5. 外乱光による信号の減算... 9
 3-6. フレームレートの算出... 10
4. 使い方.. 10
 4-1. 構成例 ... 10
 4-2. 光源の選択... 11
5. 距離測定例 ... 11
 5-1. 距離測定 (S11961-01CR, S12973-01CT)... 11
 5-2. 近距離測定 (S11961-01CR, S12973-01CT)... 12
 5-3. 測定データの平均化による距離精度の改善.. 13
 5-4. 円柱までの距離を測定.. 14
 5-5. パルスレーサダイオードを使用した距離測定 (S11961-01CR, S12973-01CT) 17
 5-6. 距離測定 (S11963-01CR) .. 18
 5-7. 近距離測定 (S11963-01CR) ... 19
6. 入射光量の算出 .. 20
7. キャリブレーション ... 26
 7-1. 感度比 (SR) の算出方法.. 28
 7-2. 線形範囲と非線形範囲... 28
8. 特性 ... 30
 8-1. 光入射角特性 ... 30
 8-2. 距離精度—入射信号量 ... 31
 8-3. 距離精度の温度特性 .. 31
9. 評価キット ... 32
測距イメージセンサは、TOF (Time-of-Flight)方式で対象物までの距離を測定するイメージセンサです。パルス変調した光源と組み合わせて使用し、発光／受光タイミングの位相差情報を出力します。その信号を外付けの信号処理回路またはPCで演算することによって、距離データが得られます。

1. 特長

- 高速電荷転送
- 非破壊読み出しによる広いダイナミックレンジ
 低ノイズ（S11961/S11963-01CR, S12973-01CT）
- 列ゲインアンプ内蔵（S11963-01CR）
 ゲイン: 1倍, 2倍, 4倍
- 外乱光のもとでも誤動作の少ない検出（電荷排出機能）
- リアルタイム距離計測

[表1-1] 製品ラインアップ

<table>
<thead>
<tr>
<th>タイプ</th>
<th>リニア</th>
<th>エリア</th>
</tr>
</thead>
<tbody>
<tr>
<td>型名</td>
<td>S11961-01CR</td>
<td>S12973-01CT</td>
</tr>
<tr>
<td>画素高さ</td>
<td>50 μm</td>
<td>40 μm</td>
</tr>
<tr>
<td>画素ピッチ</td>
<td>20 μm</td>
<td>22 μm</td>
</tr>
<tr>
<td>画素数</td>
<td>256</td>
<td>64</td>
</tr>
<tr>
<td>ビデオデータレート</td>
<td>5 MHz</td>
<td>10 MHz</td>
</tr>
</tbody>
</table>

2. 構造

測距イメージセンサは、受光部・シフトレジスタ・出力パッファアンプ・バイアス発生回路・タイミング発生回路などから構成されています。図2-1にブロック図を示します。測距イメージセンサは、一般的なCMOSイメージセンサとは以下の点が異なります。

- 高速電荷転送が可能な画素構造
- 2つの出力端子から距離情報に相当する2つの位相信号を出力

受光部からの出力信号は、一般的なCMOSイメージセンサと同様に、サンプル＆ホールド回路または列ゲインアンプ回路で必要な信号処理が行われ、シフトレジスタで順次走査されて電圧出力として読み出されます。
[図 2-1] ブロック図
(a) S11961-01CR, S12973-01CT

(b) S11962-01CR
3. 動作原理

3-1. 位相差 (間接)TOF (Time-of-Flight)

測距イメージセンサの受光部のタイミングチャートを図 3-1 に示します。蓄積電荷 Q1 および Q2 をそれぞれの積分容量 Cfd1、Cfd2 において電荷-電圧変換した出力電圧 Vout1、Vout2 は式 (3-1)(3-2) で表されます。

\[
Vout1 = \frac{Q1}{Cfd1} = N \times \text{Iph} \times \left\{\frac{T0 - Td}{Cfd1}\right\} \quad \cdots \quad (3-1)
\]

\[
Vout2 = \frac{Q2}{Cfd2} = N \times \text{Iph} \times \left\{\frac{Td}{Cfd2}\right\} \quad \cdots \quad (3-2)
\]

Cfd1, Cfd2: 各出力の積分容量
N: 電荷転送クロック回数
Iph: 光電流
T0: パルス幅
Td: 遅延時間

式 (3-1)(3-2)において Cfd1=Cfd2 の場合の遅延時間 Td は、式 (3-3)で表されます。

\[
Td = \frac{Vout2}{(Vout1 + Vout2)} \times T0 \quad \cdots \quad (3-3)
\]

距離に応じて出力された値 (Vout1, Vout2) を用いて、距離 L を式 (3-4)で表すことができます。

\[
L = \frac{1}{2} \times c \times Td = \frac{1}{2} \times c \times \left\{\frac{Vout2}{(Vout1 + Vout2)}\right\} \times T0 \quad \cdots \quad (3-4)
\]

c: 光速 \((3 \times 10^8 \text{ m/s})\)
測距イメージセンサの受光部構造および表面ポテンシャルを図 3-2 に示します。一般的な CMOS イメージセンサは単一電源駆動が可能ですが、受光部から蓄積部へ電荷を転送するのに μs オーダーの時間が必要です。一方 CCD イメージセンサは、高速電荷転送が可能 (ns オーダー)ですが、高電圧、複数の印加電圧が必要です。

距離情報を取得するために必要な高速電荷転送 (数十 ns～) を実現するために、当社は CMOS プロセスにおいて、CCD のような高速電荷転送が可能な画素構造を開発しました。これにより、測距イメージセンサは距離測定に必要とされる高速の電荷転送が可能となりました。

1 回のパルス発光で発生する電子数は数 e−程度です。このため、図 3-2 の動作を数千回～数万回繰り返した後に、蓄積された電荷の読み出しを行います。なお繰り返す回数は、入射光量や、必要とされる距離精度などによって変わります。

[図 3-1] 受光部のタイミングチャート

[図 3-2] 受光部構造、表面ポテンシャル
(a) VTX1: オン、VTX2: オフ (図 3-1 ①の場合)
(b) VTX1: オフ, VTX2: オン (図 3-1 ②の場合)

<table>
<thead>
<tr>
<th>測定距離範囲 max. (m)</th>
<th>VTX1, VTX2, 発光パルス幅 (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
</tr>
</tbody>
</table>

注) 光は、1 ns に約 30 cm を進みます。

3-2. タイミングチャート

S11963-01CR において、1 フレーム中で 2 回の信号読み出しを行った場合のタイミングチャートを図 3-3 に示します。1 回目は画素リセット直後の信号を読み出して、2 回目は信号蓄積後の信号を読み出しています。パルス発光と信号蓄積は図 4 の枠内の期間に繰り返されます (必要とされる距離精度に合わせて、繰り返す回数を設定する必要があります)。非破壊読み出しを行う場合は、パルス発光・信号蓄積・信号読み出しを繰り返します。
3-3. 電荷排出機能

測距イメージセンサには、受光部にて発生した電荷を転送する電荷転送ゲート (VTX1, VTX2) とともに、不要な電荷を排出する電荷排出ゲート (VTX3) があります。VTX1=VTX2=オフ、VTX3=オンのとき、信号電荷が蓄積されないので電荷排出機能がオンになり、非発光期間における外乱光などによる不要な電荷を排出することができます。電荷排出機能により、以下が可能になります。

① 高速パルス光の検出
パルスレーザダイオードなどの高速パルス光による信号電荷を効率よく蓄積することができます。
② シャッタ動作
3-4. 非破壊読み出し

入射信号が強い場合（対象物が近距離にあり、高い反射率の場合）、または外乱光が強い場合、測距イメージセンサが飽和しやすいため蓄積時間を短くする必要があります。入射信号が弱い場合、または外乱光が弱い場合は、蓄積時間を長くする必要があります。

非破壊読み出しによって、これらを解決することができます（S11962-01CR：未対応）。非破壊読み出しでは、1フレーム中で異なる蓄積時間の信号を読み出すことが可能です。最適な蓄積時間の信号を選択することによって、広いダイナミックレンジを実現できます。

なお非破壊読み出しで得られた任意の2点の信号を差分演算することにより、画素内に発生するリセットノイズをキャンセルできます。

また、非破壊読み出しにおいて、閾値電圧（Va）を設定し、[図 3-6]、閾値を超えない信号を選択することによって、さらに広いダイナミックレンジを実現できます。なお、これを行うためには、信号処理回路を外付けする必要があります。
3-5. 外乱光による信号の減算

電荷排出機能により、発光期間中に蓄積された不要な電荷の排出が可能です。しかし非発光期間（VTX1=VTX2=オン）にも、外乱光などによる不要な電荷が蓄積されます。この不要な電荷を除去するために、1フレーム中に読出し出した以下の2つの信号を差分演算してAC信号分だけを抽出します。1つの信号はパルス光（AC光）と外乱光（DC光）によるもので、もう1つの信号は外乱光だけによるもので、これによって、より正確に距離計測を行うことができます。

\[L = \frac{(1/2) \times c \times T_o \times (V_{out2} - V_{out2(DC)}) - (V_{out1} - V_{out1(DC)})}{(V_{out1(DC)} - V_{out2(DC))}} \]

L: 対象物までの距離
C: 光速
To: パルス幅
Vout1, Vout2: 信号光による出力
Vout1(DC), Vout2(DC): 外乱光による出力
3-6. フレームレートの算出

フレームレート=1/1 フレームの時間
=1/(蓄積時間 + 読み出し時間) ･･･(3-5)

必要とされる距離精度、外乱光などの使用環境によって蓄積時間の設定を変える必要があります。

リセットレベル読み出しを行わずに蓄積信号読み出しのみを行うことができます。この場合、ランダムノイズの増加や、受光部の感度不均一性の劣化が発生します。

非破壊読み出しを行う場合:
1 フレームの時間 = 蓄積時間 + (読み出し時間 × 非破壊読み出し回数) ･･･(3-6)

[リニアイメージセンサ]

読み出し時間 = \(\frac{1}{\text{クロックパルス周波数}} \times \text{水平画素数} \)
=1 クロック当たりの時間 (1 画素の読み出し時間) × 水平画素数 ･･･(3-7)

読み出し時間の算出例 (クロックパルス周波数=5 MHz, 水平画素数=272)

読み出し時間 = \(\frac{1}{5 \times 10^6 \text{[Hz]}} \times 272 \)
= 200 [ns] × 272
= 0.0544 [ms] ･･･(3-8)

[エリアイメージセンサ]

読み出し時間 = \(\frac{1}{\text{クロックパルス周波数}} \times \text{水平タイミングクロック数} \times \text{垂直画素数} \)
=1 クロック当たりの時間 (1 画素の読み出し時間) × 水平タイミングクロック数 × 垂直画素数 ･･･(3-9)

読み出し時間の算出例 (クロックパルス周波数=10 MHz, 水平タイミングクロック数*2=208, 垂直画素数=128)

読み出し時間 = \(\frac{1}{10 \times 10^6 \text{[Hz]}} \times 208 \times 128 \)
= 100 [ns] × 208 × 128
= 2.662 [ms]

* 水平タイミングクロック数 208 = 電荷転送 40 + 水平総画素数 168

4. 使い方

4-1. 構成例

測距イメージセンサを使用した距離計測システムの構成例を図 4-1 に示します。測距イメージセンサ、光源および光源用駆動回路、投／受光の光学系、タイミング発生回路、距離演算回路から構成されています。距離精度は、光源の発光量や投／受光の光学系に大きく依存します。
4-2. 光源の選択

測距イメージセンサを使用して距離計測を行う場合、測距イメージセンサの電荷転送クロックのパルス幅に合わせた光源（LEDまたはパルスレーザダイオード）を選択する必要があります。たとえば、4.5 mまでの距離計測を行う場合には、電荷転送クロックのパルス幅、および発光パルス幅を30 nsに設定する必要があるため、光源には上昇/下降時間10 ns程度以下の応答性が必要です。測距リニアイメージセンサS11961-01CR、S12973-01CTを使用する場合はライン状に、測距エリアイメージセンサS11962-01CR、S11963-01CRを使用する場合はエリア状に光源を照射するため、大きな出力パワーが必要で、そのために光源を複数個配列する場合もあります。光源を複数個配列する場合、複数光源を高速・高出力でドライブするための駆動回路も必要です。

5. 距離測定例

5-1. 距離測定（S11961-01CR, S12973-01CT）

S11961-01CR, S12973-01CTと評価用光源を利用した場合の、以下の条件における距離測定の例を参考までに示します。

[条件]
・測距イメージセンサ S11961-01CR, S12973-01CT (中央画素にて測定)
・非破壊読み出し
・蓄積時間=30 ms
・電荷転送クロック幅 VTX1, 2=30 ns
・受光レンズ：F=1.2, 受光画角=37.5°×27.7°
・光源（LED）：出力=10 W, デューティ比=0.3%, 発光パルス幅=30 ns, λ=870 nm
・投光画角=10°×10°
・外乱光：室内光レベル
・Ta=25 ℃
5-2. 近距離測定（S11961-01CR, S12973-01CT）

近距離（100 cm まで）における測定例を図5-3・図5-4に示します。

[条件]
- 測距イメージセンサ: S11961-01CR, S12973-01CT (中央画素にて測定)
- 畳積時間=20 ms
- 電荷転送クロック幅 VTX1, 2=30 ns, VTX3=3300 ns
- 受光レンズ: F=1.2, 受光画角=37.5° × 27.7°
- 光源 (LED): 出力=10 W, デューティ比=0.9%, 発光パルス幅=30 ns, λ=870 nm
・投光画角=10° × 10°
・外乱光: 室内光レベル
・Ta=25 ℃
・近距離の測定時 (5〜20 cm): センサと光源の位置を変更

[図 5-3] 距離測定特性 (近距離, S11961-01CR, S12973-01CT, 代表例)

[図 5-4] 距離精度 (近距離, S11961-01CR, S12973-01CT, 代表例)

5-3. 測定データの平均化による距離精度の改善

距離精度を改善する方法として、測定データの平均化があります。平均化には2つの方法があり、1つは時間における平均化、もう1つは複数画素における平均化です。複数画素における平均化の例を図 5-5に示します。
図5-5 複数画素における平均化の例

中央画素を中心としたN画素における測定距離を1画素当たりで平均化し、その値の100フレームにおけるバラツキを求めます。

図5-6 距離精度の改善例（複数画素における平均化による）

5-4. 円柱までの距離を測定

対象物として、金属円柱（ϕ10 cm程度）と白色（拡散体）円柱を使った場合の測定例を示します。正反射する金属円柱の場合、光源の正面では、ほぼ正確に測定できますが、ずれた位置では正確に測定できません。
[図 5-7] 金属円柱の例

[図 5-8] 出力—光入射画素 No.
(a) 金属円柱

(b) 白色円柱
[図 5-9] 測定距離—光入射画素 No.
（a）金属円柱

（b）白色円柱
5-5. パルスレーザダイオードを使用した距離測定 (S11961-01CR, S12973-01CT)

以下の測定条件で距離測定を行った例を紹介します。

[条件]
・測距リニアイメージセンサ S11961-01CR, S12973-01CT
・光源: パルスレーザダイオード（当社社内評価用）
 ピークパワー=50 W, λ=870 nm, パルス幅=50 ns, デューティ比=0.1%, FOV=40°×2° (水平 × 垂直)
・対象物: 標準拡散板, 白（反射率 90%）, 黒（反射率 10%）
・受光レンズ: SPACECOM L8CSWI (f=8 mm, F=1.2, 1/3 inch CS マウント)
・外乱光: 蛍光灯環境下
・戻り光量が最も多い1画素のデータを抽出

[図 5-10] 距離測定例 [白の対象物 (反射率 90%)]

[図 5-11] 距離測定例 [黒の対象物 (反射率 10%)]
5-6. 距離測定（S11963-01CR）

以下の測定条件で距離測定を行った例を紹介します。

[条件]
・測距イメージセンサ S11963-01CR (中央画素にて測定)
・蓄積時間 = 2 ms
・電荷転送クロック幅 VTX1, 2 = 40 ns, VTX3 = 920 ns
・受光レンズ F = 1.2, 受光画角 = 37.5° × 27.7°
・光源 (LED 8 × 8): 10 W, λ = 870 nm
・投光画角 = 17.2° × 17.2°
・外乱光: 室内光レベル
・Ta = 25 ℃

[図 5-12] 測定距離、距離精度ー実距離 [白の対象物 (反射率 90%), S11963-01CR, 代表例]

[図 5-13] 測定距離、距離精度ー実距離 [グレーの対象物 (反射率 18%), S11963-01CR, 代表例]
5-7. 近距離測定（S11963-01CR）

近距離（100 cmまで）における測定例を図5-14・図5-15に示します。

[条件]
・測距イメージセンサ S11963-01CR（中央画素に測定）
・蓄積時間=10 ms
・電荷転送クロック幅 VTX1, 2=20 ns, VTX3=460 ns
・受光レンズ F=2.0, f=3 mm, 受光画角=±45°
・光源 (LED × 8): 5.6 W, λ=850 nm
・投光画角=±45°
・外乱光: 室内光レベル
・Ta=25 ℃

[図5-14] 測定距離、距離精度一実距離 [白の対象物 (反射率 90%), S11963-01CR 評価キット, 代表例]
6. 入射光量の算出

測距イメージセンサを用いたカメラモジュールを製作する場合、センサを最大限に生かすために、使用条件に合わせてパラメータを設定する必要があります。たとえば、太陽光が強い屋外では、画素の飽和を避けるために蓄積時間を短くしたり、バンドパスフィルタを使い太陽光の入射を抑えるなど対策が必要です。

蓄積時間をどこまで短くすればよいか、どの程度まで太陽光を弱めるバンドパスフィルタが適しているかは、使用条件によって異なります。そこで、カメラモジュールの構成をモデル化して、簡易的に1画素当たりの入射光量（信号光、外乱光）を計算する式を用意しました。

カメラモジュールのパラメータ

測距イメージセンサを用いたカメラモジュールの主なパラメータを以下に示します。また、概要図を図6-1に示します。

光源からの光は、レンズによって画角（θH, θV）で長方形に整形されてセンサに照射されるものとします。

(1) 対象物
・対象物までの距離 L [m]
・対象物の反射率 R [%]

(2) 投光部
・光源出力 P [W/sr]
・投光効率 Er [%]
・デューティ比 duty
・蓄積時間 Tacc [s]
・発光素子の半値角 θsource [°]

・投光角度（水平、垂直）θH, θV [°]

(3) 外乱光
・太陽光強度 Pamb [W/m²]
・バンドパスフィルタの透過波長範囲 (短波長側、長波長側) \(\lambda_{\text{short}}, \lambda_{\text{long}} \) [nm]

(4) 受光部
・受光レンズ効率 \(E_r \) [%]
・バンドパスフィルタの信号光に対する透過率 \(E_f \) [%]
・受光レンズ F 値
・受光レンズ焦点距離 \(f \) [m]

(5) 測距イメージセンサ
・画素サイズ (水平、垂直) \(H_{\text{pix}}, V_{\text{pix}} \) [m] (面積 \(S_{\text{pix}} \))
・開口率 \(\text{FF} \) [%]
・受光感度 \(S_{\text{sens}} \) [A/W]
・画素容量 \(C_{\text{fd}} \) [F]
・最大電圧振幅 \(V_{\text{max}} \) [V]
・ランダムノイズ \(R_{N} \) [V]
・暗出力 \(V_{\text{D}} \) [V/s]

[図 6-1] 測距イメージセンサ内蔵のカメラモジュールの概念図

計算方法
まず、対象物上のスポット光量 \(P_{\text{spot}} \) [W/m²] を計算します [式 (6-1)]。

\[
P_{\text{spot}} = P \times \frac{A}{L^2} \times E_p \times \frac{1}{S_{\text{spot}}} \quad \text{…(6-1)}
\]

\(P \): 光源の出力 [W/sr]
\(A \): 半径 \(L \) の球において角度 \(\theta_{\text{source}} \) で切り取った球面上の面積
$\frac{A}{L^2}$: 投光の立体角 [sr]

Ep: 投光効率 [%]

Sspot: 対象物上に照射されたスポット光の面積 [m2]

[図 6-2] 球面上の面積 A

$S\text{spot}$ は式 (6-2) で表されます。

$$S\text{spot} = 2L \tan \theta_H \times 2L \tan \theta_V \cdots (6-2)$$

A は、式 (6-3) で表されます。

$$A = 2\pi \{1 - \cos(\theta\text{source})\} \times L^2 \cdots (6-3)$$

次に、対象物上の微小面積における反射光のうちで、受光レンズに入射する角度を計算します。受光レンズの直径を D [m] とすると、対象物上のある点と受光レンズの端がなす角度 θ_R は式 (6-4) で表されます。

$$\theta_R = \tan^{-1}\left(\frac{D}{2L}\right) \cdots (6-4)$$

θ_R を使うと、立体角 Ω_t [単位: sr] は式 (6-6) で表されます。

$$\Omega_t = 4\pi \sin^2 \frac{\theta_R}{2} \cdots (6-6)$$

θ_R は、対象物上の位置によって異なりますが、ここでは一定の値に近似しています。対象物から全方位に拡散した反射光のうちで、Ω_t の割合がレンズに入射するものとします。
測距イメージセンサが反射光を取り入れることができる対象物上の領域は、受光レンズを通して対象物に映し出される画素の投影面に当たります。画素面積 S_{pix} と対象物上の画素の投影面積 S'_{pix} は、式 (6-7) の関係にあります。

$$S'_{pix} = \left(\frac{L}{f} \right)^2 S_{pix} \cdots (6-7)$$

信号光・外乱光が対象物に当たって反射し、レンズを通して 1 画素に入射する光量を求めます。計算の簡略化のため、対象物は完全拡散面とします。入射光量を $I [W]$ とすると反射光量は、点光源の場合は $I/\pi [W/sr]$、太陽光のような広い面光源の場合は $I [W/sr]$ となります。1 画素に入射する信号光量 $P_{pix} [W]$ は、式 (6-8) で表されます。

$$P_{pix} = P_{spot} \times R \times \frac{1}{\pi} \times \Omega t \times S'_{pix} \times E_R \times E_F (\text{sig}) \times \text{FF} \cdots (6-8)$$

1 画素に入射する外乱光量 $P_{pix(amb)} [W]$ は、式 (6-9) で表されます。

$$P_{pix(amb)} = P_{amp} \times R \times 1 \times \Omega t \times S'_{pix} \times E_R \times E_F (\text{amb}) \times \text{FF} \cdots (6-9)$$

$E_F (\text{sig})$: 信号光に対するバンドパスフィルタの透過率
$E_F (\text{amb})$: 外乱光に対するバンドパスフィルタの透過率

信号光による出力電圧 $V_{pix} [V]$ は、式 (6-10) で表されます。

$$V_{pix} = P_{pix} \times T_{acc} \times \text{duty} \times (S_{sens}/C_{fd}) \cdots (6-10)$$

T_{acc}: 種菌時間 [s]
duty: デューティ比
S_{sens}: 受光感度 [A/W]
C_{fd}: 画素容量 [F]

外乱光による出力電圧 $V_{pix(amb)} [V]$ は、式 (6-11) で表されます。

$$V_{pix(amb)} = P_{pix(amb)} \times T_{acc} \times \text{duty} \times (S_{sens}/C_{fd}) \cdots (6-11)$$

距離精度

上記によって求められた 1 画素に入射する信号光と外乱光の光量を用いて、カメラモジュールの距離精度を計算します。信号光により発生する 1 画素当たりの光電流 $I_{pix} [A]$ は、式 (6-12) で表されます。

$$I_{pix} = P_{pix} \times S_{sens} \cdots (6-12)$$

信号光により発生する 1 画素当たりの電子数 $Q_{pix} [e^{-}]$ は、式 (6-13) で表されます。

$$Q_{pix} = I_{pix} \times T_{acc} \times \text{duty}/e \cdots (6-13)$$

$$= P_{pix} \times S_{sens} \times T_{acc} \times \text{duty}/e$$

e: 電気素量 = $1.602 \times 10^{-19} [C]$
外乱光により発生する1画素当たりの電子数 \(Q_{pix(amb)} \) は、上記と同様に式 (6-14) で表されます。

\[
Q_{pix(amb)} = P_{pix(amb)} \times S_{sens} \times T_{acc} \times \text{duty}/e \quad \cdots (6-14)
\]

次にノイズ成分について説明します。光ショットノイズ \(N_L \)、ランダムノイズ \(N_R \)、暗電流ショットノイズ \(N_D \) の大きさは、それぞれ以下の式で表されます [単位: e-]。

\[
N_L = \sqrt{Q_{pix} + Q_{pix(amb)}} \quad \cdots (6-15)
\]

\[
N_R = R_N \times C_{fd}/e \quad \cdots (6-16)
\]

\(R_N \): ランダムノイズ [V]

\[
N_D = \sqrt{V_0 \times T_{acc} \times C_{fd}/e} \quad \cdots (6-17)
\]

\(V_0 \): 暗出力 [V/s]

トータルノイズ \(N \) [e-]は式 (6-18) で表されます。

\[
N = \sqrt{N_L^2 + N_R^2 + N_D^2} \quad \cdots (6-18)
\]

信号電子数 \(Q_{pix} \) と \(N \) の比が \(S/N \) になります。

距離精度 \(\sigma \) [m]は式 (6-19) で表されます。

\[
\sigma = \frac{N}{Q_{pix}} \times \frac{c T_0}{2} \quad \cdots (6-19)
\]

\(c \): 光速

\(T_0 \): 発光パルス幅

計算例
カメラモジュールに関するパラメータの例を表 6-1 に示します。これらの値を用いて、信号光・外乱光による出力電圧を計算します。

\[
A = 2\pi (1 - \cos 14^\circ) \times 1^2 = 0.18664 \text{ [m}^2]\]

\[
S_{spot} = 2 \tan 45^\circ \times 2 \tan 2.5^\circ = 0.17464 \text{ [m}^2]\]

\[
\theta_R = \tan^{-1} \left(\frac{f}{2FL} \right) = \tan^{-1} \left(\frac{2.8 \times 10^{-3}}{2 \times 1.2} \right) = 0.066845[^\circ]
\]

\[
\Omega t = 4\pi \sin^2 \frac{0.066845045^\circ}{2} = 4.276 \times 10^{-6} \text{ [sr]}
\]

\[
S_{pix} = \left(\frac{1}{2.8 \times 10^{-3}} \right)^2 (20[\mu \text{m}] \times 50[\mu \text{m}]) = 1.2755 \times 10^{-4} \text{ [m}^2]\]

\[
P_{spot} = 100 \times 0.18664 \times 0.6 \times \frac{1}{0.17464} = 64.1 \text{ [W/m}^2]\]

\[
P_{pix} = 64.1 \times 0.1 \times \frac{1}{\pi} \times 4.276 \times 10^{-6} \times 1.2755 \times 10^{-4} \times 0.6 \times 0.88 \times 0.3 = 176.3 \text{ [pW]}
\]
信号光、外乱光によって発生する電圧は、1画素の飽和電圧に対してそれぞれ1.24%、4.15%になります。電子数で表すと、以下の式で表されます。

\[
Q_{\text{pix}}(\text{amb}) = 176.3 \times 10^{-12} \times 0.3 \times 15 \times 10^{-3} \times 0.001 \left/ \left[1.602 \times 10^{-19} \right] \right. = 4952.2 [\text{e}^-]
\]

\[
Q_{\text{pix}}(\text{amb}) = 590.4 \times 10^{-12} \times 0.3 \times 15 \times 10^{-3} \times 0.001 \left/ \left[1.602 \times 10^{-19} \right] \right. = 16584.3 [\text{e}^-]
\]

ノイズ成分とトータルノイズは、以下の式で表されます。

\[
N_L = \sqrt{4952.2 + 16584.3} = 146.8 [\text{e}^-]
\]

\[
N_R = 500 \times 10^{-6} \times 40 \times 10^{-15} \left/ \left[1.602 \times 10^{-19} \right] \right. = 124.8 [\text{e}^-]
\]

\[
N_D = \sqrt{1 \times 15 \times 10^{-3} \times 40 \times 10^{-15} \left/ \left[1.602 \times 10^{-19} \right] \right.} = 61.2 [\text{e}^-]
\]

\[
N = \sqrt{146.8^2 + 124.8^2 + 61.2^2} = 202.2 [\text{e}^-]
\]

距離精度は以下の式で表されます。

\[
\sigma = \frac{202.2 \times 3 \times 10^8 \times 30 \times 10^{-9}}{4952.2} = 0.184 [\text{m}]
\]

当社製評価キットを用いて光源を駆動して距離を測定した場合の距離精度の実測値と、評価キットのパラメータを上記の計算式に入力して求めた距離精度の算出値を図6-3に示します。距離精度の算出値の方が悪い傾向にあります。

<table>
<thead>
<tr>
<th>[表 6-1] カメラモジュールに関するパラメータの例</th>
</tr>
</thead>
<tbody>
<tr>
<td>分類</td>
</tr>
<tr>
<td>対象物</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>発光</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>外乱光</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>受光</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
センサ

<table>
<thead>
<tr>
<th>分類</th>
<th>項目</th>
<th>記号</th>
<th>S11961-01CR</th>
<th>S12973-01CT</th>
<th>S11963-01CR</th>
<th>単位</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>画素サイズ (水平)</td>
<td></td>
<td>20</td>
<td>30</td>
<td></td>
<td>μm</td>
</tr>
<tr>
<td></td>
<td>画素サイズ (垂直)</td>
<td></td>
<td>50</td>
<td>30</td>
<td></td>
<td>μm</td>
</tr>
<tr>
<td></td>
<td>開口率</td>
<td></td>
<td>FF</td>
<td>0.3</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>受光感度 (λ=830 nm)</td>
<td>Ssens</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td>A/W</td>
</tr>
<tr>
<td></td>
<td>検出容量</td>
<td></td>
<td>Cfd</td>
<td>40</td>
<td>15</td>
<td>fF</td>
</tr>
<tr>
<td></td>
<td>電圧振幅</td>
<td></td>
<td>Vmax</td>
<td>1.6</td>
<td>1.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>ランダムノイズ</td>
<td></td>
<td>RN</td>
<td>500</td>
<td>500</td>
<td>μV</td>
</tr>
<tr>
<td></td>
<td>暗出力</td>
<td></td>
<td>VD</td>
<td>1</td>
<td>1</td>
<td>V/s</td>
</tr>
</tbody>
</table>

[図 6.3] 距離精度の算出値と実測値（代表例，算出値：投光効率=受光効率=100%）

7. キャリブレーション

測距イメージセンサは，距離のキャリブレーションが必要です。キャリブレーションが必要な理由を以下に示します。

[キャリブレーションが必要な理由]
・光源の発光タイミングの遅延
・センサーー光源間の配線による遅延
・光源の発光パルスの形状
・周辺回路
キャリブレーション方法の例を示します。

距離 \(L \) は式 (7-1)によって算出されます。

\[
L = \alpha \frac{V_{out2}}{V_{out1} + V_{out2}} \times \frac{cT_0}{2} - Dofs \quad \cdots(7-1)
\]

\(\alpha \): 傾き
\(c \): 光速
\(T_0 \): 発光パルス幅
\(Dofs \): 距離オフセット

発光タイミング遅延 (Light_pulse_delay)、距離オフセット (Dofs)、傾き (\(\alpha \)) を設定する必要があります。

発光タイミング遅延、距離オフセットの設定
発光タイミング遅延と距離オフセットを変えることで算出距離をシフトさせて、算出距離と実距離と一致させます。

傾き \(\alpha \) の設定
① \(VTX1 \) と \(VTX2 \) のピークのちょうど中間に、光パルスのピークがくるようにします。
② 距離の線形範囲の 2 点を選択して、理想直線と同じになるように \(\alpha \) を算出します [図 7-1]。

[図 7-1] 算出距離—実距離

以上のキャリブレーションによって、おおよその距離測定は可能になります。さらに測距特性を改善させて、算出距離を実距離に近づけるためには感度比 (SR) を設定します。

式 (7-2)には、距離の算出式 (7-1) に SR が加わっています。

\[
L = \alpha \frac{V_{out2}}{(V_{out1} \times SR) + V_{out2}} \times \frac{cT_0}{2} - Dofs \quad \cdots(7-2)
\]
7-1. 感度比（SR）の算出方法

[図 7-2] 感度比の算出方法

(1) 入射する光パルスと VTX1 のタイミングを合わせて、そのときの Vout1 を測定します（タイミング①）。
(2) 入射する光パルスと VTX2 のタイミングを合わせて、そのときの Vout2 を測定します（タイミング②）。
(3) (1)(2)で測定した Vout1 と Vout2 から SR を算出する [式 (7-3)]。

\[
SR = \frac{Vout2}{Vout1} \quad \ldots (7-3)
\]

これらの測定を暗状態で行ってください。また、飽和露光量の半分程度の光量に設定することを推奨します。

7-2. 線形範囲と非線形範囲

測距イメージセンサには、距離測定において線形範囲と非線形範囲があります。非線形範囲は、光源のパルス波形に依存します。この現象について、以下に説明します。

光パルスの入射タイミングの遅延によって、図 7-3 のような信号電荷が蓄積されます。タイミング①と③の間が、線形範囲（距離算出が可能な範囲）です。
実際には、光パルスの上昇時間・下降時間によって、Vout1 と Vout2 の線形範囲が狭くなるため、距離測定の線形範囲も狭くなります。

[図 7-4] 出力—光出力遅延時間 (2)
8. 特性

8-1. 光入射角特性

光入射角によって受光感度は変化します。測距エリアイメージセンサ S11963-01CR を用いて測定したところ、入射角±50°で受光感度はおおむね 1/2 となりました。

[測定方法]
LED 光源からの光のうち、アパーチャによって、ほぼ平行光のみが測距イメージセンサに入射するようにします。回転ステージ上に置かれたセンサ付基板の受光面が、回転ステージの回転軸上にあるように設置します。回転ステージを回して、感度の入射角特性を測定します。

[測定条件]
光パルス幅=30 ns
VTX1=VTX2=30 ns
VTX3=19940

[図 8-1] 感度の光入射角特性の測定方法

[図 8-2] 感度の入射角特性
8-2. 距離精度—入射信号量

距離精度を向上させるためには、入射信号量を増加させることが効果的です [図 8-3]。

[図 8-3] 距離精度—入射信号電子数 (S19961-01CR, S12973-01CT, 代表例)

\[\text{距離精度} \propto \sqrt{\frac{N_r^2 + N_{sh}^2 + N_D^2}{S \times (c \times T_0/2)}} \cdots (8-1) \]

S: 入射フォトン数
Nr: 読み出し回路ノイズ
Nsh: 光ショットノイズ
ND: 暗電流ショットノイズ
c: 光速
T0: 発光パルス幅

8-3. 距離精度の温度特性

入射信号量が多い場合には、温度が上がっても距離精度はあまり変化しません。入射信号量が少ない場合には、温度が上がると距離精度は悪化します。これは、温度が上がると暗電流ショットノイズが増加するためです。
9. 評価キット

測距イメージセンサ用の評価キットを利用した構成例を図 5-3 に示します。この評価キットにおいては、FPGA によりセンサ駆動タイミング、DAC-IC によりセンサ用バイアス電圧が生成され、センサの出力信号を A/D 変換してイーサネットを経由して PC へデータを転送することができます。なお、電源電圧 5 V のみで駆動が可能です。

当社は S12973-01CT、S11961-01CR、S11963-01CR 用の評価キット（LED アレイ・受光レンズ付き）を用意しています。

[図 9-1] 評価キットを用いた距離計測の構成例
[図 9-2] リニアイメージセンサ評価キットの例

[図 9-3] エリアイメージセンサ評価キットの例

[図 9-4] 評価キット（筐体付き）の例