The K12729-010K is a two-color detector in a compact ceramic package, covering a wide spectral response range. Like the current K11908-010K, it incorporates two InGaAs PIN photodiodes with different spectral response, along the same optical axis. It features low noise and low dark current and supports reflow soldering.

Features

- Wide spectral response range
- Compact, low noise, low dark current
- Supports reflow soldering

Structure

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window material</td>
<td>-</td>
<td>-</td>
<td>Borosilicate glass</td>
</tr>
<tr>
<td>Package</td>
<td>-</td>
<td>-</td>
<td>Ceramic</td>
</tr>
<tr>
<td>Photosensitive area</td>
<td>-</td>
<td>InGaAs (λ_c=1.7 μm)</td>
<td>2.4 × 2.4 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>InGaAs (λ_c=2.55 μm)</td>
<td>ϕ1.0</td>
</tr>
</tbody>
</table>

Absolute maximum ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse voltage</td>
<td>$V_{R \text{ max}}$</td>
<td>InGaAs (λ_c=1.7 μm), T_a=25 °C</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>InGaAs (λ_c=2.55 μm), T_a=25 °C</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T_{op}</td>
<td>No condensation*</td>
<td>-20 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>No condensation*</td>
<td>-20 to +85</td>
<td>°C</td>
</tr>
</tbody>
</table>

*: When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability. Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.
Electrical and optical characteristics (Ta=25 °C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral response range</td>
<td>(\lambda)</td>
<td>InGaAs ((\lambda_c=1.7 \ \mu m))</td>
<td>-</td>
<td>0.9 to 1.7</td>
<td>-</td>
<td>(\mu m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>InGaAs ((\lambda_c=2.55 \ \mu m))</td>
<td>-</td>
<td>1.7 to 2.55</td>
<td>-</td>
<td>(\mu m)</td>
</tr>
<tr>
<td>Peak sensitivity wavelength</td>
<td>(\lambda_p)</td>
<td>InGaAs ((\lambda_c=1.7 \ \mu m))</td>
<td>-</td>
<td>1.55</td>
<td>-</td>
<td>(\mu m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>InGaAs ((\lambda_c=2.55 \ \mu m))</td>
<td>-</td>
<td>2.1</td>
<td>-</td>
<td>(\mu m)</td>
</tr>
<tr>
<td>Photosensitivity</td>
<td>(S)</td>
<td>InGaAs ((\lambda_c=1.7 \ \mu m), \lambda=\lambda_p)</td>
<td>0.85</td>
<td>0.95</td>
<td>-</td>
<td>A/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>InGaAs ((\lambda_c=2.55 \ \mu m), \lambda=\lambda_p)</td>
<td>0.7</td>
<td>1.0</td>
<td>-</td>
<td>A/W</td>
</tr>
<tr>
<td>Dark current</td>
<td>(I_d)</td>
<td>InGaAs ((\lambda_c=1.7 \ \mu m), V_R=10 \ \text{mV})</td>
<td>-</td>
<td>1</td>
<td>10</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>InGaAs ((\lambda_c=2.55 \ \mu m), V_R=10 \ \text{mV})</td>
<td>-</td>
<td>0.7</td>
<td>3.5</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Cutoff frequency</td>
<td>(f_c)</td>
<td>InGaAs ((\lambda_c=1.7 \ \mu m), -3 \ \text{dB}\ V_R=0 \ \text{V}, R_L=50 \ \Omega)</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>InGaAs ((\lambda_c=2.55 \ \mu m), -3 \ \text{dB}\ V_R=0 \ \text{V}, R_L=50 \ \Omega)</td>
<td>2</td>
<td>6</td>
<td>-</td>
<td>MHz</td>
</tr>
<tr>
<td>Terminal capacitance</td>
<td>(C_t)</td>
<td>InGaAs ((\lambda_c=1.7 \ \mu m), V_R=0 \ \text{V}, f=1 \ \text{MHz})</td>
<td>-</td>
<td>1.5</td>
<td>2.5</td>
<td>nF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>InGaAs ((\lambda_c=2.55 \ \mu m), V_R=0 \ \text{V}, f=1 \ \text{MHz})</td>
<td>-</td>
<td>0.5</td>
<td>1</td>
<td>nF</td>
</tr>
<tr>
<td>Shunt resistance</td>
<td>(R_{sh})</td>
<td>InGaAs ((\lambda_c=1.7 \ \mu m), V_R=10 \ \text{mV})</td>
<td>1</td>
<td>10</td>
<td>-</td>
<td>M(\Omega)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>InGaAs ((\lambda_c=2.55 \ \mu m), V_R=10 \ \text{mV})</td>
<td>2.8</td>
<td>14</td>
<td>-</td>
<td>k(\Omega)</td>
</tr>
<tr>
<td>Detectivity</td>
<td>(D^*)</td>
<td>InGaAs ((\lambda_c=1.7 \ \mu m), \lambda=\lambda_p)</td>
<td>(1 \times 10^{12})</td>
<td>(5 \times 10^{12})</td>
<td>-</td>
<td>cm-Hz(^{1/2})/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>InGaAs ((\lambda_c=2.55 \ \mu m), \lambda=\lambda_p)</td>
<td>(2 \times 10^{10})</td>
<td>(7 \times 10^{10})</td>
<td>-</td>
<td>cm-Hz(^{1/2})/W</td>
</tr>
</tbody>
</table>

Spectral response

![Spectral response graph](image)

\(\text{Typ. Ta}=25 \ ^\circ \text{C} \)

Spectral transmittance of window material

![Spectral transmittance graph](image)

\(\text{Typ. Ta}=25 \ ^\circ \text{C} \)
Two-color detector

Temperature characteristics of sensitivity

![Temperature characteristics of sensitivity graph](image1.png)

Dark current vs. reverse voltage

![Dark current vs. reverse voltage graph](image2.png)

Terminal capacitance vs. reverse voltage

![Terminal capacitance vs. reverse voltage graph](image3.png)

Shunt resistance vs. element temperature

![Shunt resistance vs. element temperature graph](image4.png)
- **Dimensional outline (unit: mm)**

 - **Index mark**
 - 6.6 ± 0.2
 - **Window**
 - 2.4 ± 1.5
 - **Photosensitive area**
 - InGaAs (λ=1.7 μm)
 - 6.6 ± 0.2, 2.4 ± 0.1

 - **Photosensitive area**
 - InGaAs (λ=2.5 μm)
 - 8.0 ± 0.1, 2.4 ± 0.3

- **Recommended land mark pattern (unit: mm)**

 - **Center position accuracy of photosensitive area**
 - -0.3 ≤ X ≤ +0.3
 - -0.3 ≤ Y ≤ +0.3

 - **Photosensitive area**
 - InGaAs (λ=1.7 μm)
 - 2.0 ± 0.2
 - 2.0 ± 0.2
 - 2.0 ± 0.2

 - **Anode**
 - InGaAs (λ=1.7 μm)
 - 2.0 ± 0.2
 - 2.0 ± 0.2

 - **Cathode**
 - InGaAs (λ=2.55 μm)
 - 2.0 ± 0.2
 - 2.0 ± 0.2

 - **Anode**
 - InGaAs (λ=2.55 μm)
 - 2.0 ± 0.2
 - 2.0 ± 0.2

 - **Center position accuracy of photosensitive area**
 - -0.3 ≤ X ≤ +0.3
 - -0.3 ≤ Y ≤ +0.3

 - **Recommended land mark pattern**
 - Unit: mm
 - Dimensions:
 - 2.5, 3.3, 2.5
 - 8.0, 0.8
 - 2.4, 2.4, 3.3, 2.5
 - 2.0, 2.0, 2.0, 2.0

 - **Markings**
 - ①, ⑦, ⑧, ⑨

 - **Dimensions (unit: mm)**
 - 2.0 ± 0.2, 2.0 ± 0.2
 - 2.0 ± 0.2

 - **Marks**
 - ①, ②, ③, ④

 - **Dimensions (unit: mm)**
 - 0.7 ± 0.1, 0.7 ± 0.1
 - 2.4 ± 0.3

 - **Marks**
 - ①, ②, ③, ④

 - **Dimensions (unit: mm)**
 - 6.6 ± 0.2, 2.4 ± 1.5

 - **Marks**
 - ①, ②, ③, ④

 - **Dimensions (unit: mm)**
 - 2.4 ± 0.3

 - **Marks**
 - ①, ②, ③, ④
Two-color detector K12729-010K

Measured example of temperature profile with our hot-air reflow oven for product testing

- After unpacking, store the device in an environment at a temperature range of 5 to 30 °C and a humidity of 60% or less, and perform reflow soldering within 4 weeks.
- The thermal stress applied to the device during reflow soldering varies depending on the circuit board and the reflow oven that is used.
- When setting the reflow conditions, verify that the reliability of the device is not compromised by the reflow soldering process.

Related information

www.hamamatsu.com/sp/ssp/doc_en.html

- Precautions
- Disclaimer
- Safety consideration
- Metal, ceramic, plastic package products

- Technical information
- Infrared detectors

Information described in this material is current as of December 2017. Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.