

Opto-semiconductors

Condensed Catalog

09

1

HAMAMATSU PHOTONICS K.K.

999

000

000

0 9

High-performance opto-semiconductors based on optical technology accumulated by Hamamatsu Photonics

In order to meet increasingly sophisticated needs, Hamamatsu Photonics is constantly pursuing optical technology that is one step ahead and is developing high-performance opto-semiconductors.

Contents

Manufacturing process of opto-semiconductors 5-8 Factory/Research laboratory/Domestic sales office 30-31

Hamamatsu opto-semiconductors

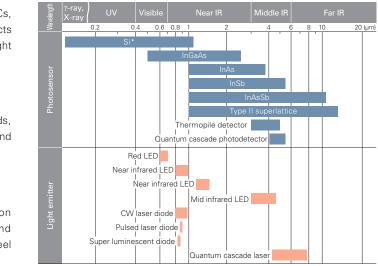
Si photodiodes	9-10
Si APD	11-12
MPPC® (SiPM) · SPAD ······	13-14
Photo IC	15-16
Image sensors	17-18
Flat panel sensors	19
PSD (position sensitive detectors)	20

Infrared detectors	21-22
LED	23
Semiconductor lasers	24
Mini-spectrometers	25-26
Opto-semiconductor modules	27-28
MEMS devices	29

Wide variety of product lineup

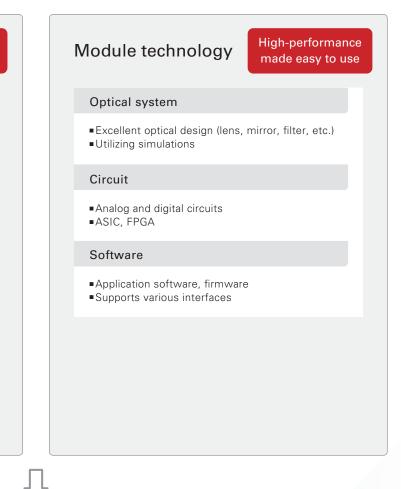
In addition to opto-semiconductors including photodiodes, photo ICs, image sensors, infrared detectors, and LEDs, we offer applied products such as mini-spectrometers. Our product lineup supports various light wavelengths (infrared, visible, ultraviolet, X-ray, high energy).

Wide application fields


Hamamatsu Photonics opto-semiconductors are used in many fields, including scientific measurement, medicine, automobiles, industry, and consumer products.

Flexible customization

At Hamamatsu's own factories, we have established a production system covering design, semiconductor process, assembly, and inspection. Custom products are also available by request. Please feel free to consult us.


>> Optical technologies in Hamamatsu Photonics Solid State Division

Opto-semiconductor technology	High-performance opto-semiconductors
Semiconductor process (S	i, compound)
 Wavelength range (infrared, visible, ultraviolet, X- Photosensitive area (large area High sensitivity High-speed response High UV resistance Sophisticated device (CMOS t 	a, multi elements)
Mounting/packaging	
 Ready for low- and high-volum Variety of package types (surface mount type, chip size pach Flip-chip bonding TE-cooled type 	
MEMS	
 Etching Nanoimprint Three-dimensional mounting 	

Products supporting each wavelength range

* A light-input-windowless type and a scintillator type can detect X-rays or gamma-rays.

Flexible customization

Applications of Hamamatsu opto-semiconductors

∎Hayabusa2

Hamamatsu Photonics manufactured an InAs linear image sensor which was included in the near-infrared spectrometer mounted on the spacecraft Havabusa2. It was used for a mission that revealed minorals spacecraft Hayabusa2. It was used for a mission that revealed miner containing water are present on the surface of the asteroid Ryugu.

Astronomical observation

The world's highest sensitivity CCDs manufactured by Hamamatsu are installed in the ultra-wide-field prime focus camera HSC (Hyper Suprime-Cam) of the Subaru Telescope at the summit of Mauna Kea, Hawaii.

nomical Observatory of Japan)

Gas measurement

InAsSb photovoltaic detectors, which have high sensitivity in the mid infrared region, can detect gas concentration with the use of the absorption wavelength unique to each type of gas molecule.

X-ray non-destructive inspection

Hamamatsu Si photodiode arrays are widely used as detectors in X-ray baggage inspection systems.

■ X-ray radiography

CMOS area image sensors are used in imaging equipment for dental diagnosis.

Flow cytometry

Flow cytometry is a method for analyzing the properties and structure of cells. It works by irradiating a laser on cells flowing in a row at high speed through a flow cell, and measuring their scattered light and fluorescence.

I LiDAR

LiDAR (light detection and ranging) is remote sensing technology that measures distance by irradiating a laser light on objects and catching the light reflected back using an optical sensor.

industry, and general electronics as well as medical and scientific applications.

photodiode arrays

Industrial robots (control encoder)

Infrared LED and Si PIN photodiode arrays are used to configure encoders built into robots for position control.

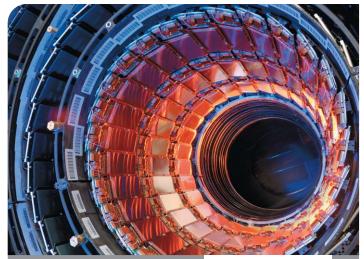
Back-thinned TDI-CCD image sensors

Semiconductor manufacturing equipment (wafer defect inspection)

Back-thinned TDI-CCD image sensors are used for wafer defect inspections.

Industrial optical data link

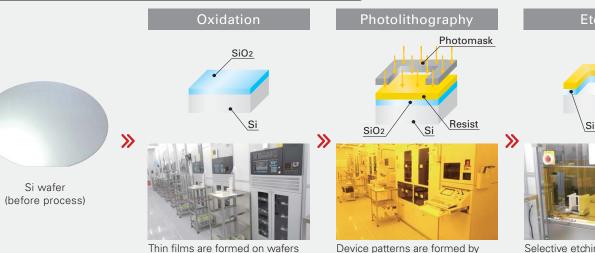
High-speed optical fiber communications using plastic optical fiber (POF) are not prone to disruption by external noise, so it is commonly used in FA, and the like.



Robot cleaner

A distance image sensor measures the distance to objects in all directions while rotating, in order to recognize shapes and detect obstacles in the room

Hamamatsu opto-semiconductors have been used in wide-ranging fields including communications,


■ High energy experiments

Manufacturing process of opto-semiconductors

by oxidation or CVD process.

the thin film on wafers.

Selective etching is performed on

lon implantation Diffusion layer **>>** \gg Doping impurities are injected into

wafers.

Metal pattern is formed.

a mun man man man be

NOR ROR ROR WAR NO.

Semiconductor technologies

Semiconductor process technologies

PIN bipolar process

Fabricates high-speed photodiodes by integrating a PIN photodiode and high-speed signal processing circuit onto a single chip.

CMOS process

The integration of circuit functions in photodetectors helps to achieve high performance, multifunctionality, and cost reduction in systems.

Product examples produced using CMOS process

Digital color sensors

CMOS image sensors

Hamamatsu has been manufacturing a wide range of opto-semiconductors using our unique wafer process technologies.

Back-thinned CCD process

photolithographic technique.

Back-thinned CCD area image sensors have a very thin photosensitive layer for high sensitivity yet low dark current.

Compound semiconductor process

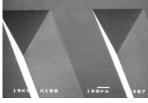
Utilizing compound semiconductor process technologies that include MBE, MOCVD, and dry etching techniques optimized for precision processing, we have been developing high-performance devices for optical communications, chemical analysis, and measurement.

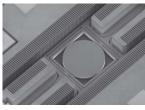
Product examples produced using compound semiconductor process

InGaAs APD

InGaAs linear image sensors

>> MEMS technologies

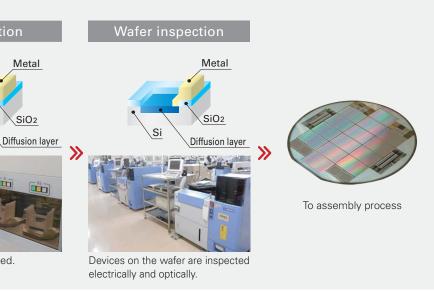

MEMS technologies.


Etching

Anisotropic etching (deep etching) and sacrificial layer etching (etching that makes a hollow structure) can provide functions not possible with conventional opto-semiconductors.

Nanoimprint

Nanoimprint is a technology for fabricating fine structures at a high throughput. Light curing resin is applied to a substrate upon which a master substrate with a fine structure is then pressed. Light is then irradiated to transfer the nanoscale structure to the resin.


V arooves formed by anisotropic etching

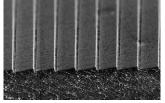
Actuators formed by anisotropic etching and sacrificial layer etching

Main factory (Ichino)

Hamamatsu is developing highly functional opto-semiconductors using a wide range of

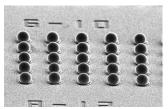
3D mount technology can be broadly grouped into "electrode technology" for fabricating

structures with 3D electrical connections and "bonding technology" for making wafer level packages. Electrode technology is essential for achieving more sophisticated functions and smaller size opto-semiconductors. Electrode technology involves techniques for forming Si


through-hole electrodes to extract electrodes from the backside of devices and flip-chip

bonding to make electrical connections between different materials. Bonding technology

includes anodic bonding and room-temperature bonding that need no adhesives and that

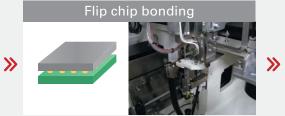

3D mount

apply direct sealing on devices to achieve ultra-small packages.

Nanoimprint

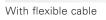
20 µm pitch indium bump electrodes

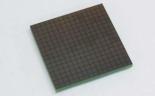
Semiconductor technologies


Module mounting technology

We aim to provide sophisticated module products at low-cost and with short lead-times, by in-line mounting of photosensors and electronic components.

Mounting device for sophisticated module products

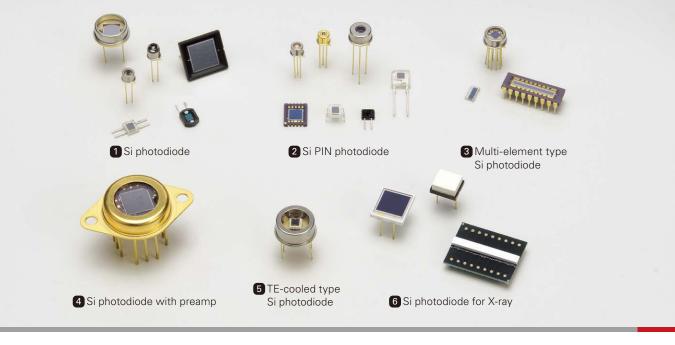




Glass epoxy board

Long and narrow type

7

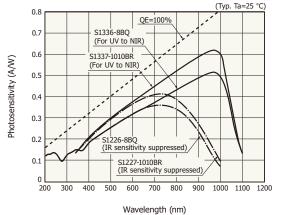


Flip-chip bonding

Si photodiodes

Product lineup for wide-ranging applications

Si photodiodes are used in various applications covering optical fiber communications, copiers, analytical instruments, and baggage inspection, and are available in various packages including metal, ceramic, and plastic packages, as well as surface mount packages.



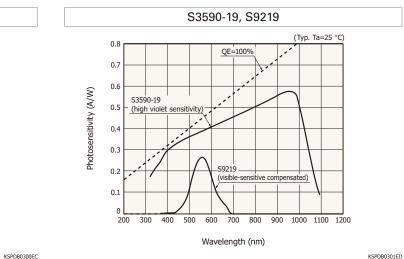
>> Features

- Excellent linearity with respect to incident light
- Low noise
- Wide spectral response range
- Mechanically rugged
- Compact and lightweight
- Long life

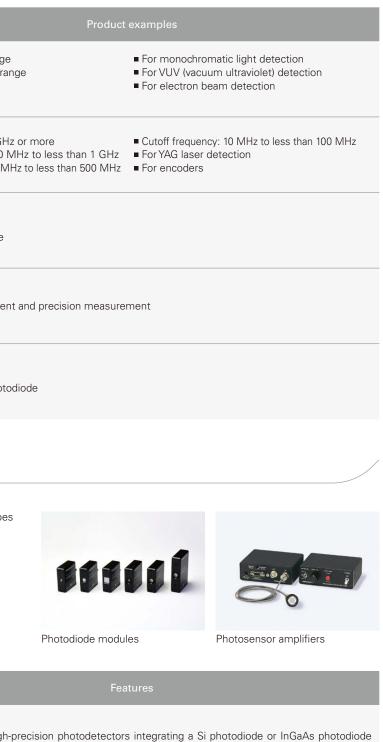
Spectral response (typical example)

S1226/S1336-8BQ, S1227/S1337-1010BR

>> Major applications


- Analytical instruments
- General photometry
- Baggage inspection
- Optical fiber communications

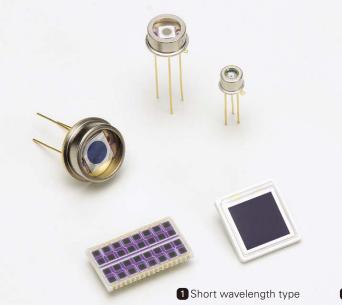
>> Product lineup


Product name	
1 Si photodiode	 For UV to near IR range For visible to near IR ra For visible range RGB color sensor
2 Si PIN photodiode	 Cutoff frequency: 1 GF Cutoff frequency: 500 Cutoff frequency: 100 M
3 Multi-element type Si photodiode	Segmented typeOne-dimensional type
4 Si photodiode with preamp5 TE-cooled type Si photodiode	 For analytical instrume
6 Si photodiode for X-ray	 With scintillator Large-area Si PIN photo

> Modules for photodiode

To make our photodiodes easier to use, we offer several different types of modules.

Product name	Features
Photodiode module	These modules are high-precision photodetectors integrating a Si p with a current-to-voltage conversion amplifier into a compact case.
Photosenser amplifier	Photosensor amplifiers are current-to-voltage conversion amplif photocurrent from a photodiode with very low noise.

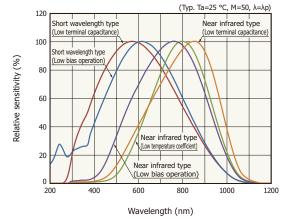


are current-to-voltage conversion amplifiers used to amplify very slight ptodiode with very low noise.

Si APD

High-speed, high-sensitivity photodiodes with an internal gain mechanism

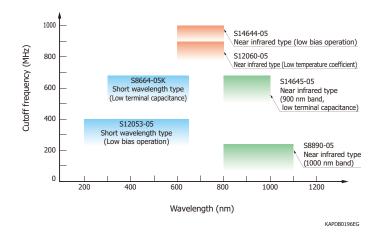
APD (avalanche photodiodes) are high-speed, high-sensitivity photodiodes that internally amplify photocurrent by the application of a reverse voltage. They deliver a higher S/N than PIN photodiodes and are widely used in optical rangefinders, FSO (free space optics), and scintillation detectors, etc.



>> Features

- Excellent linearity with respect to incident light
- Low noise
- Wide spectral response range
- Mechanically rugged
- Compact and lightweight
- Long life

Spectral response


>> Major applications

- Low-light-level detection
- Analytical instruments
- FSO

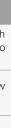
KAPDB0195EF

- Optical rangefinders
- Optical fiber communications
- Lidar
- YAG laser detection

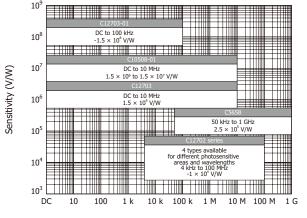
Cutoff frequency vs. recommended wavelength

>> Product lineup

	Туре	Recommended wavelength (nm)	Package	Features
Short wavelength	Low-bias operation	200 to 650	Metal	Enhanced constitution the LIV to visible reaso
type	Low terminal capacitance	320 to 650	Metal, ceramic	Enhanced sensitivity in the UV to visible range
	Low bias operation	700 to 900	Metal	FSO (free space optics), optical fiber communications, analytical instruments
	Low temperature coefficient	700 10 900		FSO, optical fiber communications
Near infrared ture	850 nm band	700 to 1000		FSO, optical fiber communications, analytical instruments
2 Near infrared type	900 nm band	- 700 to 1000		
	1000 nm band	800 to 1100		FSO, analytical instruments, YAG laser light detection
	TE-cooled type	700 to 900		Low-light-level detection
	700 nm band	600 to 800		Type with low dark current, wide operating temperature range, and improved sensitivity in the LiDAR wavelength band Little variation in breakdown voltage
	800 nm band	700 to 900		
3 For LiDAR	900 nm band	800 to 1000	Surface mount type	
	900 nm band	850 to 950		
Gain-stabilized	700 nm band	600 to 800		
	800 nm band	700 to 900		Gain-stabilized APD (GS APD) with a built-in temperature compensation function inside the sensor.
	900 nm band	800 to 1000		


>> APD modules

This high-sensitivity light detection modules integrate an APD, temperature-compensation bias circuit, and I/V converter. They are easy to handle and can be used simply by supplying DC voltage externally.


Туре	Features
Standard type	Contains a near infrared or short wavelength type APD. FC/SMA fiber adapters are also provided.
High-sensitivity type	High gain type for detection under low illuminance
High-stability type	Digital temperature-compensation, high- stability APD module
High-speed type	Operates over a wide range of frequencies (up to 1 GHz)

Sensitivity vs. response speed (APD modules)

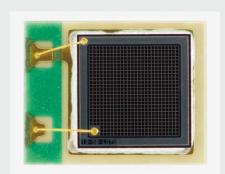
Response speed (Hz)

KACCB0355E

MPPC[®] (SiPM) · SPAD

Compact opto-semiconductors with excellent photon-counting capability

MPPC (Multi-Pixel Photon Counter) is a photon counting device that is a multi-pixelized Geiger mode APD. Hamamatsu's SPAD (Single Photon Avalanche Diode) is an element with a structure of a single pixel that combines a Geiger mode APD and a quenching resistor into one set. It is an optical semiconductor element that enables photon counting.



>> Features

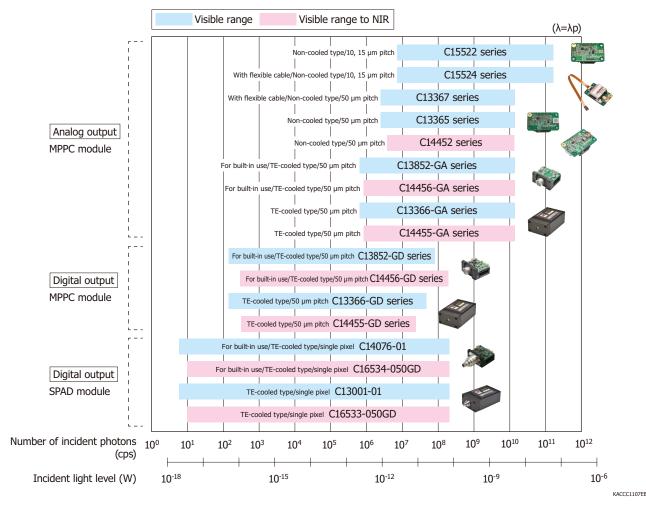
- Excellent photon-counting capability
- High gain: 10⁵ to 10⁶
- Low-bias operation
- Insensitive to magnetic fields
- Simple readout-circuit operation
- Low afterpulses, low crosstalk (compared to our previous products)
- Excellent time resolution
- Room temperature operation

Major applications

- Flow cytometry
- Laser scan microscopes
- Single molecule detection
- Fluorescence analysis, fluorescence lifetime measurement
- PETScintillation light detection
- LiDAR

What is the MPPC ?

The MPPC is so-called Si-PM (silicon photomultiplier) photosensor. It is a photon-counting device consisting of multiple APD pixels operating in Geiger mode. Each APD pixel of the MPPC outputs a pulse signal when it detects one photon. The


signal output from the MPPC is the total sum of the outputs from all APD pixels. The MPPC offers the high performance needed in photon counting and is used in diverse applications for detecting extremely weak light at the photon-counting level.

Product lineup

Туре	
For precision measurment (single type)	These are low-noise MPPCs high photon detection efficie as flow cytometry, DNA seq noise characteristics. They an TE-cooled single photon avai
2 For LiDAR	This compact type offers hig
3 MPPC array	These are MPPCs with sev MPPCs can be tiled togethe or the like.
MPPC module	MPPC modules are optical wide range (10 orders of m are available in two types: r function for stable measuren
5 SPAD module	SPAD modules are photon co

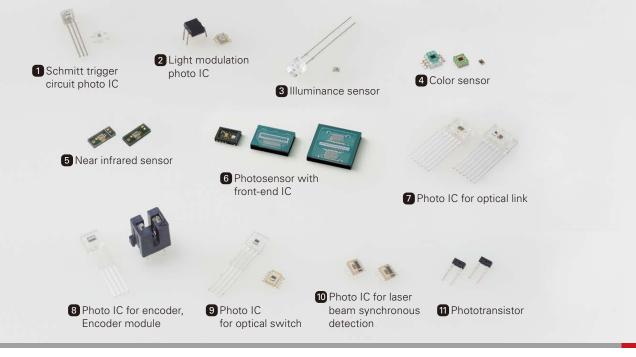
Measurable light level ranges of MPPC modules and SPAD modules (product examples)

Features

Is for precision photometry. Low crosstalk and low afterpulses in addition to ency achieve excellent S/N. They are suitable for precision measurement, such quencer, laser microscope, and fluorescence measurement, that requires low are available in two types: ceramic package and surface mount. We also have alanche diode (SPAD).

gh sensitivity in the near infrared region.

everal MPPC chips arranged in an array. The CSP (chip size package) type or to fabricate large-area devices and can be coupled efficiently to scintillators


measurement modules with built-in MPPC. They can measure light over a nagnitude) from the photon counting region to nW (nanowatt) region. They non-cooled modules, which are equipped with a temperature compensation ment, and cooled modules, which feature low dark count.

counting modules with digital output built-in TE-cooled SPAD.

Photo IC

Highly functional devices integrating a photodiode with a signal processing circuit

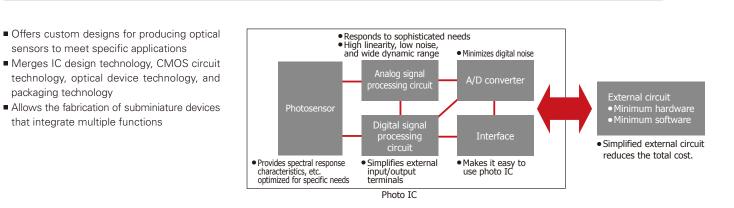
The photo IC is a light receiver element with various functions. It integrates a photosensor and a signal processing circuit into one package.

>> Features

- Small and lightweight
- Highly resistant to noise from electromagnetic induction

>> Hamamatsu photo IC technology

sensors to meet specific applications

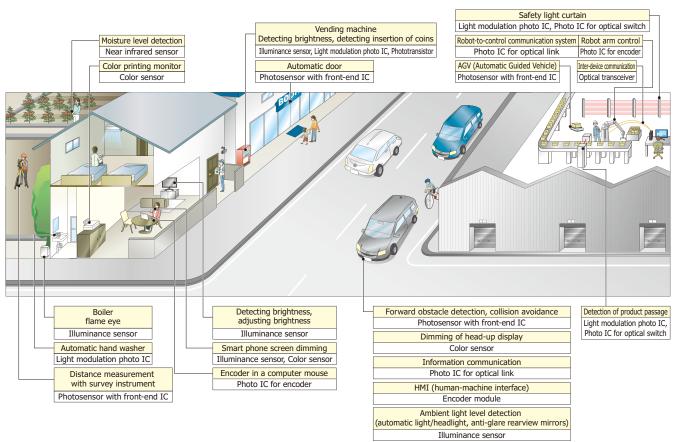

that integrate multiple functions

packaging technology

High reliability

>> Major applications

- Paper detection in office machines (copier, fax machines, etc.)
- Optical switches
- Light dimmers for liquid crystal panels and large-screen TV, etc.
- Color adjustment for display
- Plastic optical fiber communications
- Encoders



Product lineup

Туре	Output	
Schmitt trigger circuit photo IC	Digital	Photo l etc. into
2 Light modulation photo IC	Digital	Employ backgro
3 Illuminance sensor	Analog/Digital	Spectra
4 Color sensor	Digital	Has se
5 Near infrared sensor	Digital	Compa Built-in
6 Photosensor with front-end IC	Analog	Compa also ava
Photo IC for optical link (POF)	Digital	Photo I The op [.]
B Photo IC for encoder, Encoder module	Digital	Uses a 2-phase
9 Photo IC for optical switch	Analog/Digital	Has fur
Photo IC for laser beam synchronous detection	Digital	For det
1 Phototransistor	Analog	Amplifi derived

>> Application examples

Hamamatsu photo ICs are widely used for many different needs.

IC integrates a photodiode, amplifier, schmitt trigger circuit, and output transistor, ito one chip

bys optical synchronous detection to ensure stable output even under fluctuating round light

ral response close to human visual sensitivity

ensitivity to red, green, and blue light

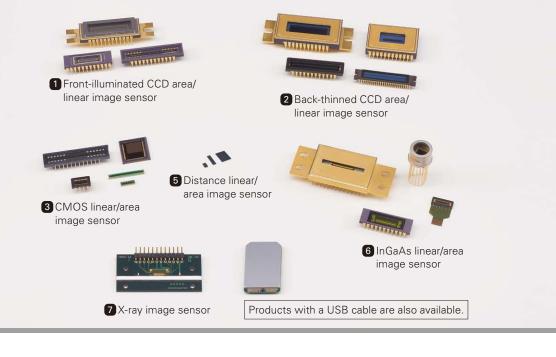
act optical device that integrate a InGaAs photodiode and IC. n LED type is also available.

act devices that integrate a Si APD and front-end IC. APD arrays for LiDAR are vailable for installation in automatic carriers.

IC transmitters and receivers for plastic optical fiber communications. ptical transceiver with a built-in transmitter and receiver is also available.

a 4-element photodiode that can be used to easily configure an encoder with se digital output

unctions needed for industrial optical switches


etecting laser beam print-start timing in laser printers and digital copiers

fies the photocurrent generated by input light. Allows a larger current to be ed even from a small photosensitive area when compared to photodiodes.

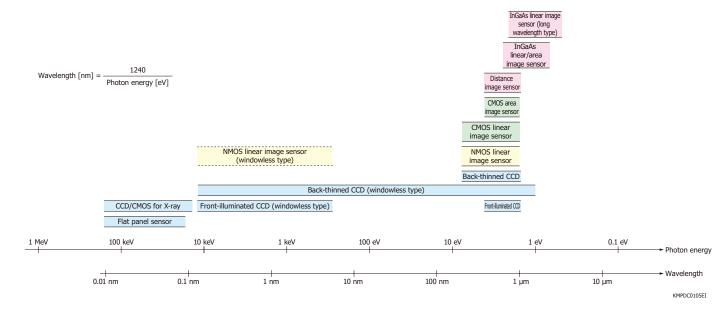
Image sensors

A wide lineup of image sensors suitable for spectroscopy and measurement applications

Hamamatsu provides various types of image sensors that cover a wide energy level and spectral response range from near infrared (NIR) at 2.6 µm through visible, ultraviolet, vacuum ultraviolet (VUV) down to soft X-rays and hard X-rays at several hundred keV.

>> Features

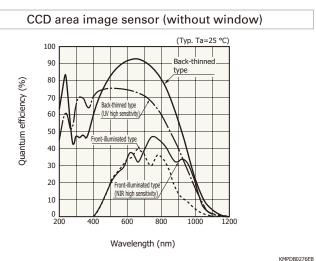
A wide lineup covering different wavelengths

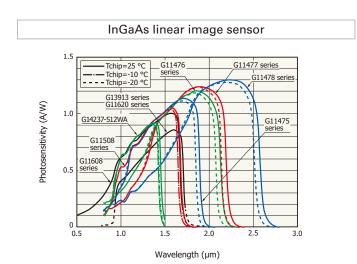

Major applications

- Spectrophotometry
- Scientific measurement
 NIR spectrometry
- t Obstacle detection

X-ray imaging

Security

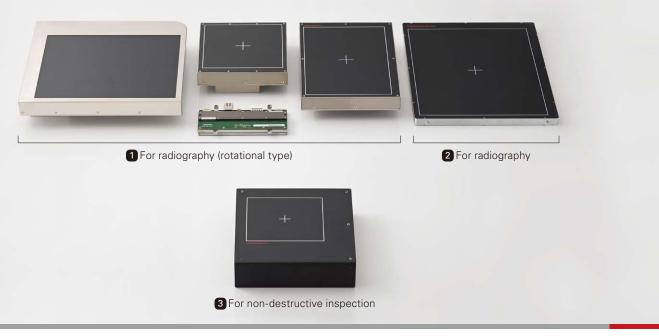

Example of detectable energy level and spectral response range



>> Product lineup

Product name	Features	Lineup
Front-illuminated CCD area/linear image sensor	Image sensors with low dark current and low noise	For spectrophotometryFor scientific measurement
2 Back-thinned CCD area/linear image sensor	Image sensors delivering high quantum efficiency from visible to VUV region	 For spectrophotometry Standard type, UV enhanced type, NIR enhanced type, Large full well type, High resolution type, High-speed readout type, Built-in electronic shutter type For scientific measurement TDI-CCD area image sensor For industrial equipment
3 CMOS linear image sensor	Image sensors integrated with signal processing circuits, making them suitable for applications where low power consumption and downsizing of the detector unit are essential	 Standard type Variable integration time type High-speed readout type High sensitivity type Digital output type With RGB color filter
3 CMOS area image sensor	APS type CMOS area image sensors with high sensitivity in near infrared region	SXGA typeVGA typeLow pixel count type
NMOS linear image sensor	Image sensors with high UV-sensitivity and excellent output linearity, making them suitable for precision photometry	 Current output type (standard type) Current output type (infrared-enhanced type) Voltage output type
5 Distance linear/area image sensor	Image sensors designed to measure the distance to an object by TOF method	Distance linear image sensorDistance area image sensor
6 InGaAs linear/area image sensor	Image sensors for near infrared region. Built-in CMOS IC allows easy operation.	 For NIR spectrometry For DWDM monitor For near infrared image measurement
X-ray image sensor	Image sensors and photodiode arrays delivering high quality X-ray images by coupling FOS (FOP coated with X-ray scintillator) or phosphor sheet	 CMOS area image sensors for radiography TDI-CCD area image sensors Photodiode arrays with amplifier for non-destructive inspection

Spectral response (typical example)



KMIRB0068EI

Flat panel sensors

Capturing high-resolution, high-quality X-ray images in real-time

Flat panel sensors are digital X-ray image sensors capable of acquiring high-resolution, high-quality X-ray images in real-time. They are made up of a sensor board and a control board, designed for a thin, compact configuration.

> Major applications

- CT imaging/panoramic imaging, biochemical imaging
- Radiography

>> Product lineup

Туре	Pixel size (µm)	Active area [(H) × (V) cm]	Frame rate* (frames/s)	Features
	100 × 100	15 × 0.6	310	
		14 × 12	19	
For radiography		15 × 12	30	High-speed, high-sensitivity type suitable for CT imaging and
(rotational type)	120 120	16 × 16	30	panoramic imaging For assembly into equipment
	24 × 17	20		
		27 × 22	13	
2 For radiography	100 × 100	30 × 25	3	For still imaging
3 For non-destructive inspection	100 × 100	13 × 11	21	For in-line, high-speed imaging

* All pixels, 1 × 1 Mode readout

PSD (position sensitive detectors)

Light spot position sensors used for distance and angle measurements

A PSD is a non-discrete type position photosensor that makes use of photodiode surface resistance. It provides position data as a continuous electrical signal and offers high position resolution, high-speed response, and high reliability.

>> Features

- Excellent position resolution
- Wide spectral response range
- High-speed response
- Simultaneously detects light intensity and center-of-gravity position of
- a light spot
- High reliability

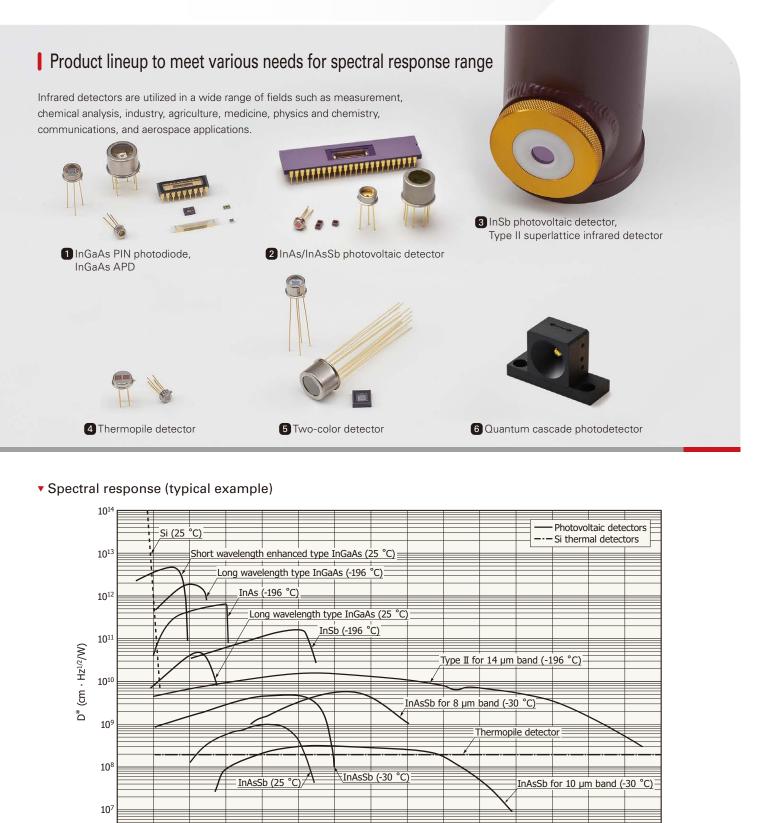
>> Product lineup

Туре	
One-dimensional PSD	Visible light cut-off type suitable for dete
	High IR-sensitivity
	Suitable for detection of microscopic ligh
	Long, narrow type with photosensitive a
2 Two-dimensional PSD	High-speed response, low dark current, s

>> Major applications

- Position and angle sensing
- Distortion and vibration measurements
- Optical rangefinders
- Optical switches
- Precise position measurements such as laser displacement meters

Lineup


ection of near infrared light

ght spot such as from a laser diode

area length of 20 mm or more

, superior position-detection characteristic

Infrared detectors

>> Product lineup

Proc	duct name	Spectral response range	Features	Major applications	
1 InGaAs PII	1 InGaAs PIN photodiode		 High-speed response Various types of photosensitive areas, arrays, and packages available TE-cooled type available 	 Optical fiber communications Optical power meter Gas analyzer Water content analyzer NIR (near infrared) photometry 	
1 InGaAs AF	1 InGaAs APD		Low dark currentLow capacitanceHigh sensitivity	Distance measurementLiDAROTDR	
2 InAs photo	2 InAs photovoltaic detector		 Covers a spectral response range close to PbS but offers higher response speed 	 Gas measurement Infrared radiation measurement FTIR 	
2 InAsSb photovoltaic detector		1 to 11 µm	 Infrared detector in the 5 µm, 8 µm, or 10 µm spectral band, with high sensitivity and high reliability Covers a spectral response range (5 µm band) close to PbSe but offers higher response speed 	 Gas measurement FTIR Radiation thermometer Laser monitors 	
3 InSb photo	3 InSb photovoltaic detector		 Suitable for CO2 and SOx (SO, SO2, SO3) gas analysis due to high sensitivity in the 3 to 5 µm band 	■ FTIR	
3 Type II super	3 Type II superlattice infrared detector		 The sensor does not use mercury and cadmium, which are RoHS directive restricted substances, and it has expanded sensitivity up to the 14 µm band. 		
4 Thermopile	4 Thermopile detector		 Sensors that generate thermoelectromotive force in proportion to the energy level of incident light 	 Radiation thermometer Flame detection CH4, CO2 concentration measurement 	
	Si + InGaAs	0.32 to 2.55 μm	 Wide spectral response range from UV to IR Two-color detectors incorporate an infrared-transmitting 	 Spectrophotometers Laser monitors Flame monitors Radiation thermometer 	
5 Two-color detector	Si + InAsSb	0.32 to 5.3 µm	Si photodiode mounted over an InGaAs PIN photodiode or an InAsSb photovoltaic detector.		
	InGaAs + InGaAs	0.9 to 2.55 μm	 A sensor made of two vertically stacked InGaAs PIN photodiodes with different spectral ranges 		
6 Quantum ca	6 Quantum cascade photodetector 4.1 to 5.5 μm		 Ultrafast mid-infrared photodetector with a response bandwidth of over 20 GHz. 	 Heterodyne detection High frequency/high time resolved measurement 	

>> High-speed optical fiber communication devices

The high-speed photodiodes come in various packages (metal, receptacle, pigtail).

10⁶

Wavelength (µm)

Semiconductor lasers

1 CW laser diode (CWLD)

2 Pulsed laser diode (PLD)

3 Super luminescent diode (SLD)

Infrared LED and red LED with high output

Compared to laser diodes, LEDs offer advantages such as lower cost and longer life.

6 For optical link

>> Features

High output

Available in various types of packages

>> Product lineup

4 For gas detection

>> Major applications

Optical switches

Encoders

- Optical rangefinders
- Light sources for moisture meter

- Optical fiber communications
- FSO

Lineup covering variety of needs

>> Features

>> Product lineup

Product name	Features	Major applications
CW laser diode (CWLD)	Laser diodes designed to be driven in continuous wave (CW) mode. Output power from milliwatts to a few W.	 General measurement Laser-driven light source Infrared light source Laser heating
2 Pulsed laser diode (PLD)	Laser diodes featuring high peak power under pulsed operation. Various peak output power and emission widths available.	RangefinderLiDAR
3 Super luminescent diode (SLD)	SLDs combine the high brightness of laser diodes with the low coherence of LED and are used as a light source to compensate for the shortcomings of laser diodes, such as low speckle noise.	 Light source for OCT Precision measurement Interference microscope
4 Quantum cascade laser (QCL)	Quantum cascade lasers are semiconductor lasers that offer peak emission in the mid-IR range (4 to 10 μm). It operates on a completely different principle from previous laser diodes and is expected to become a new mid-infrared laser.	 Gas measurement Quantum measurement

Туре			eatures		
		Reflector type	High output power		
1 For optical switch	Near infrared	Ball-lens type	Narrow directivity, uniform emission pattern		
For optical switch		Peripheral electrode type	Shadow of wire does not appear in emission pattern.		
	Red	Reflector type	High output power		
2 For optical encoder	Optimized lens shape allows these LEDs to emit highly collimated beams. High reliability is obtained since these LEDs do not use a current confinement structure chip.				
3 For moisture measurement	Long-wavelength LED with peak emission wavelength at 1.45 µm				
4 For gas detection	High output LED with peak emission wavelength in the mid infrared region				
5 For infrared lighting	Infrared camera lighting LED. Types with peak emission wavelength at 850 to 1550 nm are available.				
6 For optical link	These LEDs are suitable for 50 Mbps or 125 Mbps optical link.				

23

Semiconductor lasers used for a wide range of applications

Compact and highly robust semiconductor lasers are used in every aspect of our daily lives.

Mini-spectrometers

>> Product lineup

Integrating an optical system and image sensor, etc.

Hamamatsu offers a full line of mini-spectrometers that are integrated with an optical system and image sensor, etc. by fabricating the grating section using micromachining techniques.

>> Features

- High throughput due to transmission grating made of quartz (TG/TM series)
- Highly accurate optical characteristics
- No external power supply required:
- Uses USB bus power (excluding CCD type, cooled type, and type for installation in devices)
- Low noise (cooled type)
- Compact design for easy assembly
- Contains a wavelength conversion factor (data supplied only with types for installation in devices)

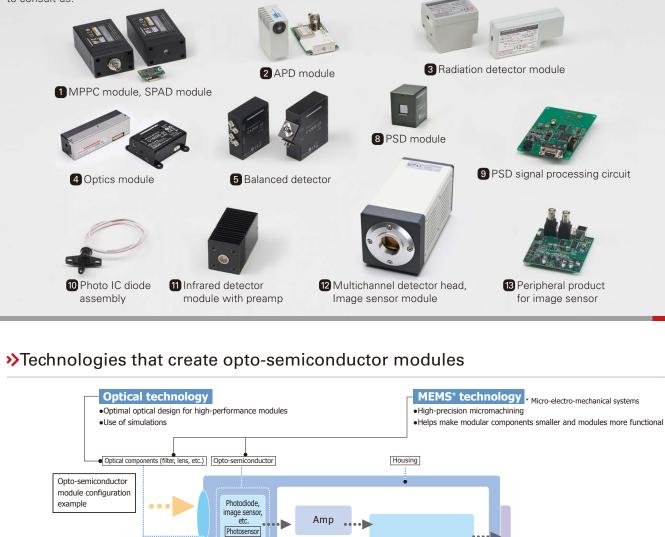
Major applications

- Evaluation of light source characteristics
- Taste analyzers
- Water content measurement
- Film thickness measurement
- Semiconductor process control
- Low-light-level measurement such as fluorescence measurement
- Installation into measurement equipment

Spectroscopic module

Compact, lightweight Raman spectroscopic module capable of photometry in a wide spectral range

The ultra-compact Raman spectroscopic module incorporates a mini-spectrometer, excitation light source, filters, and other optical elements. The measurement range is 200 cm⁻¹ to 2500 cm⁻¹, and the maximum output of the excitation light source is 50 mW. Because it has a temperature adjustment function for stabilizing the emission wavelength of the light source, it is capable of stable measurement even in environments with a fluctuating ambient temperature. It can be used for point-of-care testing (POCT) and other simple onsite screening tests.


Series	Туре	Spectral response range (nm)	Spectral resolution max. (nm)	External power supply	Light input method	Built-in circuit	Internal image sensor
1 TG series	High sensitivity C9404CA High resolution	200 to 400	3 1* ¹	AC adapter			Back-thinned CCD image sensor
	C9404CAH IR-enhanced C9405CC	500 to 1100	5 (550 to 900)				IR-enhanced back-thinned CCD image sensor
	Near IR C11482GA	900 to 1700	7	Not needed*2		Yes	InGaAs linear image sensor
	Near IR (cooled) C9913GC	300 10 1700	7	+5 V, +12 V			
	Near IR (cooled) C9914GB	1100 to 2200	8	+5 V, +12 V			
	Near IR (cooled) C11118GA	900 to 2550	20				
2 TM series	High sensitivity C10082CA		6	AC adapter			Back-thinned CCD image sensor
	High resolution C10082CAH	200 to 800	1*1				
	Wide dynamic range C10082MD		6	Not needed*2			CMOS linear image sensor
	High sensitivity C10083CA		8 (320 to 900)	AC adapter			Back-thinned CCD image sensor
	High resolution C10083CAH	320 to 1000	1* ¹ (320 to 900)				
	Wide dynamic range C10083MD		8	Not needed*2			CMOS linear image sensor
	Trigger-compatible C11697MB						High-sensitivity CMOS linear image sensor
	Compact, thin C13053MA	500 to 1100	3.5	-			High-sensitivity CMOS linear image sensor
3 TF series	Compact, thin C14214MA	790 to 1050	0.6	- Not needed*2			
	Compact, thin C13555MA	340 to 830	3				
	Compact, thin C14486GA	950 to 1700	5* ¹				
4 MS series	Ultra-compact (for installation in devices) C11708MA	640 to 1050	20	-	Input window	No	CMOS linear image sensor
5 Micro series	Ultra-compact (for installation in devices) C16767MA	190 to 440	8	-	Input window	No	High-sensitivity CMOS linear image sensor
	Ultra-compact (for installation in devices) C12666MA	340 to 780	- 15	-			CMOS linear image sensor
	Ultra-compact (for installation in devices) C12880MA	340 to 850			Input window* ³	No*4	High-sensitivity CMOS linear image sensor

*1: Typical value *2: USB bus power only *3: The C12880MA-20 with an SMA connector is also available. *4: We also offer the C13985 and C13985-20 (with SMA connector) with a built-in circuit.

Opto-semiconductor modules

Modules using opto-semiconductors / Circuits for operating opto-semiconductors

Hamamatsu provides a wide variety of opto-semiconductor modules developed by our own module technology capable of extracting the maximum performance from opto-semiconductors. Custom products are also available by request. Please feel free to consult us.

Signal processing (analog/digital)

Software technology

The sample software makes swift

evaluation possible.USB, RS-232C, and other types of interfaces are available.

•Our mounting technology combines compactness,

Interface

Mounting technology

high functionality, and low cost.

Product lineup

Products	Features	Application examples
1 MPPC module, SPAD module	MPPC modules are photon-counting modules that contain an MPPC capable of detecting extermely low-level light.	 Fluorescence lifetime measurement Biological flow cytometry Bioluminescence analysis Low-light-level detection
2 APD module	APD modules are high-speed, high-sensitivity photodetectors using an APD (avalanche photodiode).	 Low-light-level detection Optical power meters Laser monitors
3 Radiation detector module	These modules incorporate a scintillator and MPPC and are designed to detect gamma-rays.	 Environmental monitoring ar mapping Screening tasks
4 Optics module	Optics modules are spectroscopic modules featuring high blocking performance and low noise. A 10 ch module specifically designed for multi-wavelength detection and a 2 ch module with an excitation light source for fluorescence detection are available.	 Blood analysis devices PCR inspection equipment
5 Balanced detector	These are differential amplification type photoelectric conversion modules containing two Hamamatsu photodiodes with balanced characteristics.	OCTDoppler LiDAR
6 Photodiode module	Photodiode modules are high-precision photodetectors combining a photodiode and current-to-voltage conversion amp.	 Precision photometry Light source power monitors Illuminometers, color difference meters
7 Photosensor amplifier	These photosensor amplifiers are current-to-voltage conversion amplifiers for amplifying photocurrent with low noise.	 Precision photometry Optical power meters Illuminometers
8 PSD module	PSD modules are high-precision position detectors combining a PSD and current-to-voltage conversion amp.	 Optical axis alignment Rangefinders 3D measurement
9 PSD signal processing circuit	These are signal processing circuits for evaluation of PSDs.	 Performance evaluation of P
Photo IC diode assembly	The flame eye is a sensor that monitors flames in oil boilers and heating equipment.	 Flame detection in oil boilers and heaters
Infrared detector module with preamp	These modules integrate an infrared detector and a preamp.	Infrared detection
Multichannel detector head, Image sensor module	Multichannel detector heads incorporate a driver circuit designed for various types of image sensors (CCD area image sensors, InGaAs linear image sensors).	 Spectrophotometer Raman spectroscopy Semiconductor inspection Radiation thermometry
Peripheral product for image sensor	Driver circuits that are designed to match the CCD image sensor and CMOS/NMOS/InGaAs linear image sensor types are provided.	 Multichannel spectrophotometry

Opto-semiconductor technology

LED LD

Light emitter

onductor

Opto-sem

Driver

Circuit technology

and multiple channels

Circuitry

Optimized for optical devices and applications

•Supports high sensitivity, low noise, high speed,

MEMS devices

Factory/Research laboratory/Domestic sales office

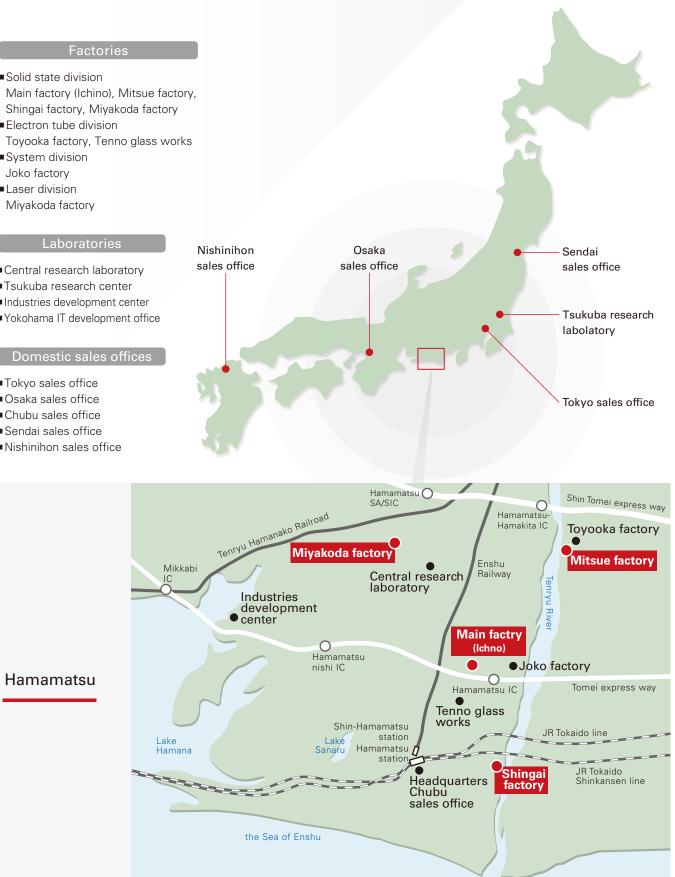
New devices using semiconductor micro-fabrication technology

They are compact, sophisticated devices that use MEMS (micro-electro-mechanical systems) technology.

>> Product lineup

Product name	Features	Applications
MEMS mirror	 Miniature electromagnetic mirror The structure includes a magnet and a mirror chip consisting of mirror, coil, and torsion bar Low power consumption Wide optical deflection angle High mirror reflectivity One-dimensional type and two-dimensional type available 	 Machine vision (shape recognition) Laser material processing Industrial LiDAR Laser measurement Laser scan unit Optical switches
2 Spectroscopic module	 Compact module with built-in MEMS-FPI spectrum sensor, light source, and control circuit Spectrum and absorbance are measured by connecting a PC via USB. 	 Material identification in solutions Plastic identification Textile identification Moisture detection Composition analysis in the agriculture and food sectors
3 FTIR engine (FT-NIR spectrometer)	 Compact Fourier transform infrared spectrometer Built-in Michelson optical interferometer and control circuit Spectrum and absorbance can be measured by connecting a PC via USB. Optical fiber incident type 	 Process analysis Material inspection Farm product inspection Plastic screening Concrete strength measurement Film thickness measurement Medical and health care equipment

Factories


Solid state division Main factory (Ichino), Mitsue factory,

- Shingai factory, Miyakoda factory
- Electron tube division
- Toyooka factory, Tenno glass works
- System division
- Joko factory
- Laser division
- Miyakoda factory

- Central research laboratory
- Tsukuba research center
- Industries development center
- Yokohama IT development office

Domestic sales offices

- Tokyo sales office
- Osaka sales office
- Chubu sales office
- Sendai sales office
- Nishinihon sales office

Main factory

(Ichino)

Si/compound/MEMS process, module manufacturing

1126-1, Ichino-cho, Chuo-ku, Hamamatsu City, Shizuoka Pref., 435-8558, Japan

Mitsue factory

Multi-kind low-volume production

768-8, Mitsue, Iwata City, Shizuoka Pref., 438-0127, Japan

Shingai factory

Mass production, multi-kind low-volume production

1128, Shingai-cho, Chuo-ku, Hamamatsu City, Shizuoka Pref., 435-0023, Japan

Miyakoda factory

Compound process, semiconductor laser manufacturing

1-8-3, Shinmiyakoda, Hamana-ku, Hamamatsu City, Shizuoka Pref., 431-2103, Japan

HAMAMATSU

PHOTON IS OUR BUSINESS

No.

Date.

HAMAMATSU

PHOTON IS OUR BUSINESS

Main Products

Opto-semiconductors

Si photodiodes

- APD
- MPPC[®]
- Photo IC
- Image sensors
- PSD
- Infrared detectors
- I FD
- Optical communication devices
- Automotive devices
- X-ray flat panel sensors
- MEMS devices
- Mini-spectrometers
- Opto-semiconductor modules

Electron Tubes

- Photomultiplier tubes
- Photomultiplier tube modules
- Microchannel plates
- Image intensifiers
- Xenon lamps / Mercury-xenon lamps
- Deuterium lamps
- Light source applied products
- Laser applied products
- Microfocus X-ray sources
- X-ray imaging devices

Imaging and Processing Systems

- Scientific cameras
- Spectroscopic and optical measurement systems
- Ultrafast photometry systems
- Life science systems
- Medical systems
- Non-destructive inspection products
- Semiconductor manufacturing support systems
- Material research systems

Laser Products

- Single chip laser diodes
- Laser diode bar modules
- Quantum cascade lasers
- Applied products of semiconductor lasers
- Solid state lasers
- Laser related products

Sales Offices

Japan:

HAMAMATSU PHOTONICS K.K. 325-6, Sunayama-cho, Chuo-ku,

Hamamatsu City, Shizuoka Pref. 430-8587, Japan Telephone: (81)53-452-2141, Fax: (81)53-456-7889 E-mail: intl-div@hq.hpk.co.jp

China:

HAMAMATSU PHOTONICS (CHINA) CO., LTD. Main Office

1201, Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Chaoyang District, 100020 Beijing, P.R. China Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866 E-mail: hpc@hamamatsu.com.cn

Shanghai Branch

4905 Wheelock Square, 1717 Nanjing Road West, Jingan District, 200040 Shanghai, P.R. China Telephone: (86)21-6089-7018, Fax: (86)21-6089-7017 E-mail: hpcsh@hamamatsu.com.cn

Shenzhen Branch

14F China Merchants Tower 1#, No. 1166 Wanghai Road, Shekou, Nanshan District, Shenzhen, P.R. China Telephone: (86)755-2165-9058, Fax: (86)755-2165-9056 E-mail: hpcsz@hamamatsu.com.cn

Wuhan Branch

Room 1005 Fanyue City T2 Building, No. 19 Guanshan Avenue, East Lake High-tech District, Wuhan 430075, Hubei, P.R. China Telephone: (86)27-5953-8219 E-mail: hpcwh@hamamatsu.com.cn

Taiwan: HAMAMATSU PHOTONICS TAIWAN CO., LTD. Main Office

13F-1, No.101, Section 2, Gongdao 5th Road, East Dist., Hsinchu City 300046, Taiwan (R.O.C.) Telephone: (886)3-659-0080, Fax: (886)3-659-0081 E-mail: info@hamamatsu.com.tw

U.S.A.: HAMAMATSU CORPORATION Main Office

360 Foothill Road, Bridgewater, NJ 08807, U.S.A. Telephone: (1)908-231-0960, Fax: (1)908-231-1218

California Office

2875 Moorpark Ave., San Jose, CA 95128, U.S.A. Telephone: (1)408-261-2022, Fax: (1)408-261-2522

Germany, The Netherlands, Poland, Denmark, Israel: HAMAMATSU PHOTONICS DEUTSCHLAND GMBH Main Office

Arzbergerstr. 10, 82211 Herrsching am Ammersee, Germany

Telephone: (49)8152-375-0, Fax: (49)8152-265-8 E-mail: info@hamamatsu.de

Netherlands Office

Transistorstraat 7, 1322 CJ Almere, The Netherlands Telephone: (31)36-5405384, Fax: (31)36-5244948 E-mail: info@hamamatsu.nl

Poland Office

10 Ciolka Street, 126-127 01-402 Warsaw, Poland Telephone: (48)22-646-0016, Fax: (48)22-646-0018 E-mail: poland@hamamatsu.de

Information in this catalog is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice. No patent rights are

Israel Office (HAMAMATSU PHOTONICS ISRAEL LTD.) Ha-Menofim 10 st., third floor, 4672561 Herzliya, Israel F-mail: Info@hamamatsu.co.il

France, Switzerland, Belgium, Spain: HAMAMATSU PHOTONICS FRANCE S.A.R.L. Main Office

19 Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: infos@hamamatsu.fr

Swiss Office

Dornacherplatz 7, 4500 Solothurn, Switzerland Telephone: (41)32 625 60 60, Fax: (41)32 625 60 61 E-mail: swiss@hamamatsu.ch

Belgian Office

Axisparc Technology, Rue André Dumont 7, 1435 Mont-Saint-Guibert, Belgium Telephone: (32)10 45 63 34, Fax: (32)10 45 63 67 E-mail: info@hamamatsu.be

Spanish Office

C. Argenters 4, edif 2, Parque Tecnológico del Vallés, 08290 Cerdanyola, (Barcelona), Spain Telephone: (34)93 582 44 30 E-mail: infospain@hamamatsu.es

North Europe and CIS:

HAMAMATSU PHOTONICS NORDEN AB Main Office

Torshamnsgatan 35, 16440 Kista, Sweden Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se

Danish Office

Lautruphoj 1-3, 2750 Ballerup, Denmark Telephone: (45)88-74-53-10 Email: info@hamamatsu.dk

Italy:

HAMAMATSU PHOTONICS ITALIA S.R.L. Main Office

Strada della Moia, 1 int. 6 20044 Arese (Milano), Italy Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41 E-mail: info@hamamatsu.it

Rome Office

Viale Cesare Pavese, 435, 00144 Roma, Italy Telephone: (39)06-50 51 34 54 E-mail: inforoma@hamamatsu.it

United Kingdom: HAMAMATSU PHOTONICS UK LIMITED

Main Office

2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire, AL7 1BW, UK Telephone: (44)1707-294888, Fax: (44)1707-325777 E-mail: info@hamamatsu.co.uk

South Africa Contact:

9 Beukes Avenue, Highway Gardens, Edenvale, 1609. South Africa Telephone/Fax: (27)11-609-0367

Solid State Division, HAMAMATSU PHOTONICS K.K.

granted to any of the circuits described herein. © 2025 Hamamatsu Photonics K.K.

MPPC is a registered trademark of Hamamatsu Photonics K.K. (EU, Japan, Korea, Switzerland, UK, U.S.A)

1126-1, Ichino-cho, Chuo-ku, Hamamatsu City, 435-8558, Japan Telephone: (81)53-434-3311, Fax: (81)53-434-5184 www.hamamatsu.com