CCD area image sensors

S9970/S9971 series

Low dark signal, low readout noise
front-illuminated FFT-CCD

The S9970/S9971 series are families of FFT-CCD image sensors specifically designed for low-light-level detection in scientific applications. The S9970/S9971 series offer lower dark current and lower readout noise than the S7010/S7011 series that have been marketed. By using the binning operation, the S9970/S9971 series can be used as a linear image sensor having a long aperture in the direction of the device length. This makes the S9970/S9971 series ideally suited for use in spectrophotometry. The binning operation offers significant improvement in S/N and signal processing speed compared with conventional methods by which signals are digitally added by an external circuit. The S9970/S9971 series also feature low noise and low dark signal (MPP mode operation). This enables low-light-level detection and long integration time, thus achieving a wide dynamic range. The S9970/S9971 series have an effective pixel size of 24 × 24 µm and are available in image areas ranging from 12.288 (H) × 1.44 (V) mm² (512 × 60 pixels) up to a large image area of 24.576 (H) × 6.048 (V) mm² (1024 × 252 pixels). The S9970/S9971 series are pin compatible with the S7010/S7011 series. (Operating conditions are a little bit changed from the S7010/S7011 series.)

Features

- Low dark signal: 10 e⁻/pixel/s typ. (0 °C, MPP mode)
- Low readout noise: 4 e⁻ rms typ.
- 512 (H) × 60 (V) to 1024 (H) × 252 (V) pixel format
- Pixel size: 24 × 24 µm
- Line/pixel binning
- 100% fill factor
- Wide dynamic range
- MPP operation

Applications

- Fluorescence spectrometers, ICP
- Raman spectrometers
- Industrial inspection requiring
- Semiconductor inspection
- DNA sequencers
- Low-light-level detection

Selection guide

<table>
<thead>
<tr>
<th>Type no.</th>
<th>Cooling</th>
<th>Number of total pixels</th>
<th>Number of active pixels</th>
<th>Image size [mm (H) × mm (V)]</th>
<th>Applicable multichannel detector head</th>
</tr>
</thead>
<tbody>
<tr>
<td>S9970-0906</td>
<td>Non-cooled</td>
<td>532 × 64</td>
<td>512 × 60</td>
<td>12.288 × 1.440</td>
<td>C7020</td>
</tr>
<tr>
<td>S9970-1006</td>
<td>Non-cooled</td>
<td>1044 × 64</td>
<td>1024 × 60</td>
<td>24.576 × 1.440</td>
<td></td>
</tr>
<tr>
<td>S9970-1007</td>
<td>Non-cooled</td>
<td>1044 × 128</td>
<td>1024 × 124</td>
<td>24.576 × 2.976</td>
<td></td>
</tr>
<tr>
<td>S9970-1008</td>
<td>Non-cooled</td>
<td>1044 × 256</td>
<td>1024 × 252</td>
<td>24.576 × 6.048</td>
<td></td>
</tr>
<tr>
<td>S9971-0906</td>
<td>One-stage TE-cooled</td>
<td>532 × 64</td>
<td>512 × 60</td>
<td>12.288 × 1.440</td>
<td>C7021</td>
</tr>
<tr>
<td>S9971-1006</td>
<td>One-stage TE-cooled</td>
<td>1044 × 64</td>
<td>1024 × 60</td>
<td>24.576 × 1.440</td>
<td></td>
</tr>
<tr>
<td>S9971-1007</td>
<td>One-stage TE-cooled</td>
<td>1044 × 128</td>
<td>1024 × 124</td>
<td>24.576 × 2.976</td>
<td></td>
</tr>
<tr>
<td>S9971-1008</td>
<td>One-stage TE-cooled</td>
<td>1044 × 256</td>
<td>1024 × 252</td>
<td>24.576 × 6.048</td>
<td>C7025</td>
</tr>
</tbody>
</table>
CCD area image sensors | S9970/S9971 series

Structure

<table>
<thead>
<tr>
<th>Parameter</th>
<th>S9970 series</th>
<th>S9971 series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>24 (H) x 24 (V) µm</td>
<td></td>
</tr>
<tr>
<td>Vertical clock phase</td>
<td>2-phase</td>
<td></td>
</tr>
<tr>
<td>Horizontal clock phase</td>
<td>2-phase</td>
<td></td>
</tr>
<tr>
<td>Output circuit</td>
<td>One-stage MOSFET source follower</td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td>24-pin ceramic DIP (refer to dimensional outlines)</td>
<td></td>
</tr>
<tr>
<td>Window*1</td>
<td>Quartz glass</td>
<td>S9971-0906/-1006/-1007: sapphire</td>
</tr>
</tbody>
</table>

*1: Temporary window type (ex. S9970-0906N) and UV coat type (ex. S9970-0906UV) are available upon request. (On the temporary window type, a window is temporarily attached by tape to protect the CCD chip and wires.)

Absolute maximum ratings (Ta=25 °C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>Topr</td>
<td></td>
<td>-50</td>
<td>-</td>
<td>+50</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Tstg</td>
<td></td>
<td>-50</td>
<td>-</td>
<td>+70</td>
<td>°C</td>
</tr>
<tr>
<td>Output transistor drain voltage</td>
<td>VOD</td>
<td></td>
<td>-0.5</td>
<td>-</td>
<td>+25</td>
<td>V</td>
</tr>
<tr>
<td>Reset drain voltage</td>
<td>VRD</td>
<td></td>
<td>-0.5</td>
<td>-</td>
<td>+18</td>
<td>V</td>
</tr>
<tr>
<td>Test point (vertical input source)</td>
<td>VISV</td>
<td></td>
<td>-0.5</td>
<td>-</td>
<td>+18</td>
<td>V</td>
</tr>
<tr>
<td>Test point (horizontal input source)</td>
<td>VISH</td>
<td></td>
<td>-0.5</td>
<td>-</td>
<td>+18</td>
<td>V</td>
</tr>
<tr>
<td>Test point (vertical input gate)</td>
<td>VIG1V, VIG2V</td>
<td></td>
<td>-15</td>
<td>-</td>
<td>+15</td>
<td>V</td>
</tr>
<tr>
<td>Test point (horizontal input gate)</td>
<td>VIG1H, VIG2H</td>
<td></td>
<td>-15</td>
<td>-</td>
<td>+15</td>
<td>V</td>
</tr>
<tr>
<td>Summing gate voltage</td>
<td>VSG</td>
<td></td>
<td>-15</td>
<td>-</td>
<td>+15</td>
<td>V</td>
</tr>
<tr>
<td>Output gate voltage</td>
<td>VOG</td>
<td></td>
<td>-15</td>
<td>-</td>
<td>+15</td>
<td>V</td>
</tr>
<tr>
<td>Reset gate voltage</td>
<td>VRG</td>
<td></td>
<td>-15</td>
<td>-</td>
<td>+15</td>
<td>V</td>
</tr>
<tr>
<td>Transfer gate voltage</td>
<td>VTR</td>
<td></td>
<td>-15</td>
<td>-</td>
<td>+15</td>
<td>V</td>
</tr>
<tr>
<td>Vertical shift register clock voltage</td>
<td>VPI1V, VPI2V</td>
<td></td>
<td>-15</td>
<td>-</td>
<td>+15</td>
<td>V</td>
</tr>
<tr>
<td>Horizontal shift register clock voltage</td>
<td>VPI1H, VPI2H</td>
<td></td>
<td>-15</td>
<td>-</td>
<td>+15</td>
<td>V</td>
</tr>
<tr>
<td>Maximum current*2</td>
<td>Imax</td>
<td></td>
<td>1.5</td>
<td>1.5</td>
<td>3.0</td>
<td>A</td>
</tr>
<tr>
<td>Maximum voltage</td>
<td>Vmax</td>
<td></td>
<td>4.4</td>
<td>8.8</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Thermistor power dissipation</td>
<td>Pd_th</td>
<td></td>
<td>-</td>
<td>-</td>
<td>7.6</td>
<td>mW</td>
</tr>
</tbody>
</table>

*2: If the current is greater than Imax, the heat absorption begins to decrease due to the Joule heat. It should be noted that this value is not a damage threshold. To protect the thermoelectric cooler and maintain stable operation, the supply current should be less than 60% of this maximum current.

*3: Temperature of cool side of thermoelectric cooler

*4: Temperature of hot side of thermoelectric cooler

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Operating conditions (MPP mode, Ta=25 °C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output transistor drain voltage</td>
<td>VOD</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>V</td>
</tr>
<tr>
<td>Reset drain voltage</td>
<td>VRD</td>
<td>11.5</td>
<td>12</td>
<td>12.5</td>
<td>V</td>
</tr>
<tr>
<td>Output gate voltage</td>
<td>VOG</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Substrate voltage</td>
<td>VSS</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Test point (vertical input source)</td>
<td>VISV</td>
<td>-</td>
<td>VRD</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Test point (horizontal input source)</td>
<td>VISH</td>
<td>-</td>
<td>VRD</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Test point (vertical input gate)</td>
<td>VIG1V, VIG2V</td>
<td>-8</td>
<td>0</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Test point (horizontal input gate)</td>
<td>VIG1H, VIG2H</td>
<td>-8</td>
<td>0</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Vertical shift register clock voltage</td>
<td>VPI1V, VPI2V</td>
<td></td>
<td>-</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Horizontal shift register clock voltage</td>
<td>VPI1H, VPI2H</td>
<td></td>
<td>-</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Summing gate voltage</td>
<td>VSGH</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Reset gate voltage</td>
<td>VRGH</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Transfer gate voltage</td>
<td>VTHG</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>External load resistance</td>
<td>RL</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>kΩ</td>
</tr>
</tbody>
</table>
Electrical characteristics (Ta=25 °C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal output frequency</td>
<td>fc</td>
<td>-</td>
<td>0.1</td>
<td>1</td>
<td>MHz</td>
</tr>
<tr>
<td>Vertical shift register capacitance</td>
<td>C⁹¹, C⁹²</td>
<td>-</td>
<td>750</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>S9970/S9971-0906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9970/S9971-1006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9970/S9971-1007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9970/S9971-1008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal shift register capacitance</td>
<td>C⁹³, C⁹⁴</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>S9970/S9971-0906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9970/S9971-1006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9970/S9971-1007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9970/S9971-1008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summing gate capacitance</td>
<td>C⁹⁵</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Reset gate capacitance</td>
<td>C⁹⁶</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Transfer gate capacitance</td>
<td>C⁹⁷</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>S9970/S9971-0906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9970/S9971-1006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9970/S9971-1007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9970/S9971-1008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer efficiency*⁵</td>
<td>CTE</td>
<td>0.99995</td>
<td>0.99999</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DC output level</td>
<td>Vout</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Output impedance</td>
<td>Z₀</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>kΩ</td>
</tr>
<tr>
<td>Power dissipation*⁶</td>
<td>P</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>mW</td>
</tr>
</tbody>
</table>

*5: Charge transfer efficiency per pixel, measured at half of the full well capacity
*6: Power dissipation of the on-chip amplifier plus load resistance

Electrical and optical characteristics (Ta=25 °C, unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturation output voltage</td>
<td>Vsat</td>
<td>-</td>
<td>150</td>
<td>300</td>
<td>-</td>
</tr>
<tr>
<td>Full well capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ke⁻</td>
</tr>
<tr>
<td>Vertical</td>
<td>Fw</td>
<td>15</td>
<td>300</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Horizontal</td>
<td>300</td>
<td>600</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Conversion efficiency*⁷</td>
<td>CE</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>µV/e⁻</td>
</tr>
<tr>
<td>Dark current (MPP mode)*⁸</td>
<td>DS</td>
<td>-</td>
<td>200</td>
<td>3000</td>
<td>e/pixel/s</td>
</tr>
<tr>
<td>〈25 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 °C</td>
<td></td>
<td></td>
<td>10</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Readout noise*⁹</td>
<td>Nread</td>
<td>-</td>
<td>4</td>
<td>18</td>
<td>e⁻ rms</td>
</tr>
<tr>
<td>Dynamic range*¹⁰</td>
<td>Line binning</td>
<td>75000</td>
<td>150000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dynamic range*¹⁰</td>
<td>Area scanning</td>
<td>37500</td>
<td>75000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spectral response range</td>
<td>λ</td>
<td>-</td>
<td>400</td>
<td>1100</td>
<td>nm</td>
</tr>
<tr>
<td>Photoresponse nonuniformity*¹¹</td>
<td>PRNU</td>
<td>-</td>
<td>-</td>
<td>±10</td>
<td>%</td>
</tr>
<tr>
<td>Blemish</td>
<td>PRNU</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Point defects*¹²</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cluster defects*¹³</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Column defects*¹⁴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

*⁷: V CCP=20 V, Load resistance=22 kΩ
*⁸: Dark current nearly doubles for every 5 to 7 °C increase in temperature.
*⁹: -40 °C, operating frequency is 80 kHz.
*¹⁰: Dynamic range (Drange) = Full well capacity / Readout noise
*¹¹: Measured at one-half of the saturation output (full well capacity) using LED light (peak emission wavelength: 560 nm)

\[
\text{Photoresponse nonuniformity} = \frac{\text{Fixed pattern noise (peak to peak)}}{\text{Signal}} \times 100 \text{ [%]}
\]

*¹²: White spots
 - Pixels that generate dark current higher than 3% of the saturation (measured at 0 °C, Ts=1 s)
 - Black spots
*¹³: 2 to 9 contiguous defective pixels
*¹⁴: 10 or more contiguous defective pixels
Spectral response (without window)

(Typ. Ta=25 °C)

*15: Spectral response with sapphire or AR-coated sapphire is decreased according to the spectral transmittance characteristic of window material.

Spectral transmittance characteristics of window material

(Typ. Ta=25 °C)

Dark current vs. temperature

(Typ.)

Window material

<table>
<thead>
<tr>
<th>Type no.</th>
<th>Window material</th>
</tr>
</thead>
<tbody>
<tr>
<td>S9970 series</td>
<td>Quartz glass*16</td>
</tr>
<tr>
<td></td>
<td>(option: window-less)</td>
</tr>
<tr>
<td>S9971-0906/-1006/-1007</td>
<td>Sapphire*17</td>
</tr>
<tr>
<td></td>
<td>(option: window-less)</td>
</tr>
<tr>
<td>S9971-1008</td>
<td>AR-coated sapphire*17</td>
</tr>
<tr>
<td></td>
<td>(option: window-less)</td>
</tr>
</tbody>
</table>

*16: Resin sealing
*17: Hermetic sealing
Device structure (conceptual drawing of top view in dimensional outlines)

Pixel format

<table>
<thead>
<tr>
<th>Left ← Horizontal direction → Right</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>Optical black</td>
<td>Isolation</td>
<td>Effective</td>
<td>Isolation</td>
<td>Optical black</td>
<td>Blank</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>512 or 1024</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

| Top ← Vertical direction → Bottom | | | |
|----------------------------------|--|--|
| Isolation | Effective | Isolation |
| 2 | 60, 124 or 252 | 2 |
Timing chart

Line binning

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIV, P2V, TG</td>
<td>Tpwv</td>
<td>1.5</td>
<td>4.5</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td>Rise and fall times</td>
<td>Tprv, Tpfv</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>P1H, P2H</td>
<td>Tpwh</td>
<td>500</td>
<td>5000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rise and fall times*18</td>
<td>Tprh, Tpfh</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Duty ratio</td>
<td></td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>SG</td>
<td>Tpws</td>
<td>500</td>
<td>5000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rise and fall times</td>
<td>Tprs, Tfps</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Duty ratio</td>
<td></td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>RG</td>
<td>Tpwr</td>
<td>100</td>
<td>500</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rise and fall times</td>
<td>Tpr, Tpf</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>TG - P1H</td>
<td>Tovr</td>
<td>3</td>
<td>6</td>
<td>-</td>
<td>µs</td>
</tr>
</tbody>
</table>

*18: Symmetrical clock pulses should be overlapped at 50% of maximum amplitude.
Dimensional outlines (unit: mm)

S9970-0906

Photosensitive area: 12.288

Photosensitive surface: 1.1 ± 0.3

1st pin index mark:

- 1: 31.75 ± 0.3
- 12: 10.05 ± 0.25
- 24: 27.94 ± 0.13
- 13: 0.46 ± 0.05
- 25: 2.54 ± 0.13

Type no.

<table>
<thead>
<tr>
<th>Photosensitive area</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>S9970-1006</td>
<td>24.576 (H)</td>
<td>1.440 (V)</td>
</tr>
<tr>
<td>S9970-1007</td>
<td>24.576 (H)</td>
<td>2.976 (V)</td>
</tr>
</tbody>
</table>

S9970-1006/-1007

Photosensitive surface:

- 1: 40.64 ± 0.41
- 12: 10.05 ± 0.25
- 24: 27.94 ± 0.13
- 13: 0.46 ± 0.05
- 25: 2.54 ± 0.13

1st pin index mark:
CCD area image sensors

S9970/S9971 series

S9970-1008

Photosensitive area
24.576

1st pin index mark

Photosensitive surface
1.1 ± 0.3

Dimensions:
24.576 ± 0.25
40.64 ± 0.41
6.048 ± 0.35
14.99 ± 0.25

S9971-0906

Photosensitive area
12.288

1st pin index mark

Photosensitive surface

Dimensions:
12.288 ± 0.25
32.0 ± 0.3
14.99 ± 0.25
27.94 ± 0.13

Notes:
- Dimensions are in millimeters.
- Photosensitive areas are indicated for both sensor models.
-这一刻

Hamamatsu
Photons is our business
CCD area image sensors

S9970/S9971 series

S9971-1006/-1007

<table>
<thead>
<tr>
<th>Type no.</th>
<th>Photosensitive area</th>
</tr>
</thead>
<tbody>
<tr>
<td>S9971-1006</td>
<td>A: 24.576 (H)</td>
</tr>
<tr>
<td></td>
<td>B: 1.440 (V)</td>
</tr>
<tr>
<td></td>
<td>C: 7.5</td>
</tr>
<tr>
<td>S9971-1007</td>
<td>A: 24.576 (H)</td>
</tr>
<tr>
<td></td>
<td>B: 2.976 (V)</td>
</tr>
<tr>
<td></td>
<td>C: 7.1</td>
</tr>
</tbody>
</table>

Dimensional outline (S9971-1006/-1007, unit: mm)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st pin index mark</td>
<td>4.0 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>5.0 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>24.576 (H)</td>
</tr>
<tr>
<td></td>
<td>1.440 (V)</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>24.576 (H)</td>
</tr>
<tr>
<td></td>
<td>2.976 (V)</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
</tr>
<tr>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>40.64 ± 0.41</td>
</tr>
<tr>
<td>C</td>
<td>58.84 ± 0.13</td>
</tr>
<tr>
<td>B</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>24.99 ± 0.25</td>
</tr>
</tbody>
</table>

Photosensitive surface

- TE-cooler
- Type no.

S9971-1008

<table>
<thead>
<tr>
<th>Type no.</th>
<th>Photosensitive area</th>
</tr>
</thead>
<tbody>
<tr>
<td>S9971-1008</td>
<td>A: 24.576</td>
</tr>
<tr>
<td></td>
<td>B: 6.7 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>C: 7.7 ± 0.68</td>
</tr>
</tbody>
</table>

Dimensional outline (S9971-1008, unit: mm)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st pin indication pad</td>
<td>6.048</td>
</tr>
<tr>
<td></td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>60.0 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>5.2 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>6.7 ± 0.63</td>
</tr>
<tr>
<td></td>
<td>7.3 ± 0.63</td>
</tr>
<tr>
<td></td>
<td>7.7 ± 0.68</td>
</tr>
<tr>
<td></td>
<td>2.54 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>44.0 ± 0.44</td>
</tr>
<tr>
<td></td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>60.0 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>5.2 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>6.7 ± 0.63</td>
</tr>
<tr>
<td></td>
<td>7.3 ± 0.63</td>
</tr>
<tr>
<td></td>
<td>7.7 ± 0.68</td>
</tr>
</tbody>
</table>

* Size of window that guarantees the transmittance in the "Spectral transmittance characteristics of window material" graph.
Pin connections

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
<th>Remark (standard operation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RG</td>
<td>Reset gate</td>
<td>RG</td>
<td>Reset gate</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RD</td>
<td>Reset drain</td>
<td>RD</td>
<td>Reset drain</td>
<td>+12 V</td>
</tr>
<tr>
<td>3</td>
<td>OS</td>
<td>Output transistor source</td>
<td>OS</td>
<td>Output transistor source</td>
<td>RL=22 kΩ</td>
</tr>
<tr>
<td>4</td>
<td>OD</td>
<td>Output transistor drain</td>
<td>OD</td>
<td>Output transistor drain</td>
<td>+20 V</td>
</tr>
<tr>
<td>5</td>
<td>OG</td>
<td>Output gate</td>
<td>OG</td>
<td>Output gate</td>
<td>+3 V</td>
</tr>
<tr>
<td>6</td>
<td>SG</td>
<td>Summing gate</td>
<td>SG</td>
<td>Summing gate</td>
<td>Same timing as P2H</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>Th1 Thermistor</td>
<td>-</td>
<td>Th2 Thermistor</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>P2H</td>
<td>CCD horizontal register clock-2</td>
<td>P2H</td>
<td>CCD horizontal register clock-2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>P1H</td>
<td>CCD horizontal register clock-1</td>
<td>P1H</td>
<td>CCD horizontal register clock-1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>IG2H</td>
<td>Test point (horizontal input gate-2)</td>
<td>IG2H</td>
<td>Test point (horizontal input gate-2)</td>
<td>0 V</td>
</tr>
<tr>
<td>12</td>
<td>IG1H</td>
<td>Test point (horizontal input gate-1)</td>
<td>IG1H</td>
<td>Test point (horizontal input gate-1)</td>
<td>0 V</td>
</tr>
<tr>
<td>13</td>
<td>ISH</td>
<td>Test point (horizontal input source)</td>
<td>ISH</td>
<td>Test point (horizontal input source)</td>
<td>Shorted to RD</td>
</tr>
<tr>
<td>14</td>
<td>P2V</td>
<td>CCD vertical register clock-2</td>
<td>P2V</td>
<td>CCD vertical register clock-2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>P1V</td>
<td>CCD vertical register clock-1</td>
<td>P1V</td>
<td>CCD vertical register clock-1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>TG*16</td>
<td>Transfer gate</td>
<td>TG*19</td>
<td>Transfer gate</td>
<td>Same timing as P2V</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td></td>
<td>P-</td>
<td>TE-cooler-</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td></td>
<td>P+</td>
<td>TE-cooler+</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SS</td>
<td>Substrate (GND)</td>
<td>SS</td>
<td>Substrate (GND)</td>
<td>GND</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>ISV</td>
<td>Test point (vertical input source)</td>
<td>ISV</td>
<td>Test point (vertical input source)</td>
<td>Shorted to RD</td>
</tr>
<tr>
<td>23</td>
<td>IG2V</td>
<td>Test point (vertical input gate-2)</td>
<td>IG2V</td>
<td>Test point (vertical input gate-2)</td>
<td>0 V</td>
</tr>
<tr>
<td>24</td>
<td>IG1V</td>
<td>Test point (vertical input gate-1)</td>
<td>IG1V</td>
<td>Test point (vertical input gate-1)</td>
<td>0 V</td>
</tr>
</tbody>
</table>

*19: TG is an isolation gate between vertical register and horizontal register. In standard operation, the same pulse as P2V should be applied to TG.

Specifications of built-in TE-cooler (Typ.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>S9971-0906</th>
<th>S9971-1006/-1007</th>
<th>S9971-1008</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal resistance</td>
<td>Rint</td>
<td>Ta=25 °C</td>
<td>2.8</td>
<td>6.0</td>
<td>1.2</td>
<td>Ω</td>
</tr>
<tr>
<td>Maximum heat absorption</td>
<td>Qmax</td>
<td></td>
<td>3.4</td>
<td>6.7</td>
<td>5.1</td>
<td>W</td>
</tr>
<tr>
<td>Maximum temperature of hot side</td>
<td>-</td>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

*20: This is a heat absorption when the maximum current is supplied to the TE-cooler.
TE-cooler characteristics

S9971-0906

(Typ. Ta=25 °C)

Voltage vs. current

CCD temperature vs. current

S9971-1006/-1007

(Typ. Ta=25 °C)

Voltage vs. current

CCD temperature vs. current
Specifications of built-in temperature sensor

A chip thermistor is built in the same package with a CCD chip, and the CCD chip temperature can be monitored with it. A relation between the thermistor resistance and absolute temperature is expressed by the following equation.

\[R_{T1} = R_{T2} \times \exp \frac{B_{T1/T2} (1/T1 - 1/T2)} {\frac{T1}{T2}} \]

- \(R_{T1} \): resistance at absolute temperature \(T1 \) [K]
- \(R_{T2} \): resistance at absolute temperature \(T2 \) [K]
- \(B_{T1/T2} \): B constant [K]

The characteristics of the thermistor used are as follows.
- \(R_{298} = 10 \text{ k}\Omega \)
- \(B_{298/323} = 3450 \text{ K} \)
CCD area image sensors | S9970/S9971 series

Precautions (Electrostatic countermeasures)

- Handle these sensors with bare hands or wearing cotton gloves. In addition, wear anti-static clothing or use a wrist strap, in order to prevent electrostatic damage due to electrical charges from friction.
- Avoid directly placing these sensors on a work-desk or work-bench that may carry an electrostatic charge.
- Provide ground lines or ground connection with the work-floor, work-desk and work-bench to allow static electricity to discharge.
- Ground the tools used to handle these sensors, such as tweezers and soldering irons.

It is not always necessary to provide all the electrostatic measures stated above. Implement these measures according to the amount of damage that occurs.

Element cooling/heating temperature gradient rate

When using an external cooler, the element cooling/heating temperature gradient rate should be set at less than 5 K/min.

Multichannel detector head (C7020, C7021, C7025)

Features

- **C7020:** for S9970 series
 - C7021: for S9971-0906/-1006/-1007
 - C7025: for S9971-1008
- **Area scanning or full line-binning operation**
- **Readout frequency:** 250 kHz
- **Readout noise:** 20 e⁻ rms typ.
- **ΔT=50 °C (ΔT changes by radiation method.)**

<table>
<thead>
<tr>
<th>Input</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VD1</td>
<td></td>
<td>+5 Vdc, 200 mA</td>
</tr>
<tr>
<td>VA1+</td>
<td></td>
<td>+15 Vdc, +100 mA</td>
</tr>
<tr>
<td>VA1-</td>
<td></td>
<td>-15 Vdc, -100 mA</td>
</tr>
<tr>
<td>VA2</td>
<td></td>
<td>+24 Vdc, 30 mA</td>
</tr>
<tr>
<td>VD2</td>
<td></td>
<td>+5 Vdc, 30 mA (C7021, C7025)</td>
</tr>
<tr>
<td>VP</td>
<td></td>
<td>+5 Vdc, 2.5 A (C7021, C7025)</td>
</tr>
<tr>
<td>Vf</td>
<td></td>
<td>+12 Vdc, 100 mA (C7021, C7025)</td>
</tr>
<tr>
<td>Master start</td>
<td>ms</td>
<td>HCMOS logic compatible</td>
</tr>
<tr>
<td>Master clock</td>
<td>mc</td>
<td>HCMOS logic compatible, 1 MHz</td>
</tr>
</tbody>
</table>
CCD area image sensors | S9970/S9971 series

Multichannel detector head controller

<table>
<thead>
<tr>
<th>Type no.</th>
<th>Interface</th>
<th>Photo</th>
<th>Accessories</th>
</tr>
</thead>
</table>
| C7557-01 | USB2.0 | ![Image](image) | - USB cable
- Fuse (2.5 A)
- Detector head connection cable
- AC cable
- Software [compatible OS: Windows 7 (32-bit, 64-bit), Windows 8 (64-bit), Windows 8.1 (64-bit)]
- Operation manual
- MOS adapter |

Connection example

- Connections to multichannel detector head and PC (C7557-01)

![Connection diagram](connection_diagram)

- Image sensor + Multichannel detector head
- Dedicated cable (included with C7557-01)
- AC cable (100 to 240 V included with C7557-01)
- Dedicated cable (included with C7557-01)
- USB cable (included with C7557-01)
- Trig.
- PC (USB 2.0/3.0) [Windows 7 (32-bit, 64-bit)/ Windows 8 (64-bit)/ Windows 8.1 (64-bit)]

* Shutter, etc. are not available.
Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- Disclaimer
- Image sensors