High-speed, high-sensitivity photodiodes having internal multiplication function

Si APD

Si avalanche photodiode

High-speed, high-sensitivity photodiodes having internal multiplication function

The APD is a high-speed, high-sensitivity photodiode that internally multiplies photocurrent when reverse voltage is applied. The APD, having a signal multiplication function inside its element, achieves higher S/N than the PIN photodiode and can be used in a wide range of applications such as high-accuracy optical rangefinders and low-level light detection with a scintillator.

Lineup

Home Lineup

Operating Short Near For LiDAR Stabilized type

For LiDAR Stabilized type

Gain-stabilized type

Modules products note

Si APD

The APD is a high-speed, high-sensitivity photodiode that internally multiplies photocurrent when reverse voltage is applied.

Ту	/pe	Recommended spectral range (nm)	Peak sensitivity wavelength (nm)	Features	Applications	
Short wavelength	Low bias operation	200 to 650	620	Enhanced sensitivity in UV to visible region	Low light level detection, analytical instruments	
type	Low terminal capacitance	320 to 650	600	Elinanced sensitivity in OV to visible region	Low-light-level detection, analytical instruments	
	Low bias operation	700 to 900	800	Low bias voltage operation	FSO (free space optics), optical fiber communications, analytical instruments	
Near infrared	Low temperature coefficient	700 to 900	800	Low temperature coefficient of bias voltage, easy gain adjustment	FSO , optical fiber communications	
type	850 nm band	700 to 1000	840	High sensitivity in 850 nm band	FSO , optical fiber communications, analytical instruments	
	900 nm band	700 to 1000	860	High sensitivity in 900 nm band	FSO , optical fiber communications, analytical instruments	
	1000 nm band	800 to 1100	940	High sensitivity in 1000 nm band	FSO , analytical instruments, YAG laser light detection	
	TE-cooled type	700 to 900	800	High S/N	Low-light-level detection	
	700 nm band	600 to 800	760			
For LiDAR	800 nm band	700 to 900	800	Low dark current	Optical rangefinders	
FOI LIDAN	000 nm band	800 to 1000	840	Wide operating temperature Mass production compatibility	Optical rangefinders	
	900 nm band	850 to 950	900			
0	700 nm band	600 to 800	760			
Gain-stabilized type	800 nm band	700 to 900	800	Temperature compensation function built into the sensor	Optical rangefinders	
., po	900 nm band	800 to 1000	840			

Spectral response Cutoff frequency vs. wavelength

Spectral response (relative value)

For the absolute sensitivity values, see the datasheets.

KAPDB0195EF

List Spectral response Cutoff frequency vs. wavelength

Lineup

Home Lineup

Operating Short Near

For LiDAR stabilized stabilized type modules products note

Cutoff frequency vs. recommended wavelength (typical example)

KAPDB0196EG

List Spectral response Cutoff frequency vs. wavelength

Principle of APD operation

The photocurrent generation mechanism of the APD is the same as that of a normal photodiode, but the APD is different from a photodiode in that it has a function to multiply the generated carriers.

Generated carriers produce new electron-hole pairs while being accelerated by high electric field.

Newly generated carriers are also accelerated to produce further electron-hole pairs, and this process repeats itself.

Avalanche multiplication

Gain proportional to the applied reverse bias voltage can be obtained.

Low bias operation

Enhanced sensitivity in the UV to visible region

Home

Type no.	Effective photosensitive area*1 (mm)	response	Breakdown voltage max. ID=100 µA (V)	preakdown	frequency*2		Gain λ=650 nm	Pad	ckage
<u>S12053-02</u>	ф0.2				900	2			
<u>S12053-05</u>	ф0.5		200	0.14	400	5	50	TO-18	
<u>S12053-10</u>	ф1.0				250	15			
<u>S9075</u>	ф1.5	200 to 1000		0.14	100	30		TO 5	
<u>S5344</u>	ф3.0			_	25	120		TO-5	
<u>S5345</u>	ф5.0				8	320		TO-8	

^{*1:} Area in which a typical gain can be obtained

Si APD array S15249

Surface mount type 16-element Si APD array

The S15249 is a surface mount type 16-element Si APD array with high sensitivity in the short wavelength range and low-bias operation. It realizes uniform gain and small crosstalk between elements.

Spectral response

Quantum efficiency vs. wavelength

KAPDB0023EC

• Gain vs. reverse voltage

Reverse voltage (V)

KAPDB0011EC

^{*2:} Value obtained when operated at the gain indicated in the table

Low terminal capacitance

Enhanced sensitivity in the UV to visible region

Type no.	Effective photosensitive area*1 (mm)	response	Breakdown voltage max. ID=100 µA (V)	coefficient of breakdown	frequency*2	Terminal capacitance*2	Gain λ=420 nm	Pad	ckage
S8664-02K	ф0.2				700	0.8			
S8664-05K	ф0.5				680	1.6		TO-5	
S8664-10K	ф1.0				530	4			
S8664-20K	ф2.0				280	11			
S8664-30K	ф3.0			0.78	140	22		TO-8	
S8664-50K	ф5.0	320 to 1000	500		60	55	50	10-6	
<u>S8664-55</u>	5 × 5				40	80			
<u>S8664-1010</u>	10 × 10				11	270		Ceramic	

4 × 8 element array

Type no.	Effective photosensitive area*1 (mm)	· •	Breakdown	coatticiant of	frequency*2	Terminal capacitance*2	Gain λ=420 nm	Pad	ckage
<u>S8550-02</u>	1.6 × 1.6 (× 32 elements)	320 to 1000	500	0.78	250	9 (per element)	50	Ceramic	

^{*1:} Area in which a typical gain can be obtained

Spectral response

KAPDB0073EF

• Gain vs. reverse voltage

KAPDB0076EB

Quantum efficiency vs. wavelength

KAPDB0125EC

^{*2:} Value obtained when operated at the gain indicated in the table

Low terminal capacitance

This type has significantly improved sensitivity at short wavelengths compared to the same size product of the S8664 series (a product with lower speed than the S8664 series is available).

Type no.	Effective photosensitive area*1	response	Breakdown voltage max. ID=100 µA (V)	coefficient of breakdown	frequency*2	Terminal capacitance* ² (pF)	Gain	Pad	ckage
<u>\$16453-02K</u>	ф0.2				700	0.8			
S16453-05K	ф0.5			0.70	680	1.6		TO-5	
S16453-10K	ф1.0		500		470	4	50		
S16453-20K	ф2.0	320 to 1000	500	0.78	165	11	(λ=420 nm)		
<u>\$16453-30K</u>	ф3.0				75	22		TO-8	
S16453-50K	ф5.0				30	55			
<u>S14124-20</u>	ф2.0	266	500	0.78	250	11 (M=50)	50 to 400 (λ=266 nm)	TO-8	

^{*1:} Area in which a typical gain can be obtained

Spectral response

• Gain vs. reverse voltage [\$16453 series]

Quantum efficiency vs. wavelength

Wavelength (nm)

[S14124-20]

Quantum efficiency (%)

KAPDB0635EA

KAPDB0568EB

Technical

note

Related

products

^{*2:} Value obtained when operated at the gain indicated in the table

Low terminal capacitance

Enhanced sensitivity in the UV to 800 nm.

Type no.	Effective photosensitive area*1 (mm)	Spectral response range	Breakdown voltage max. ID=100 µA (V)	Dieakuowii	(:iitott	Terminal capacitance*2	Gain λ=650 nm	Package	
S17353-02K NEW	ф0.2				1000	1			
S17353-05K NEW	ф0.5		500	0.55	900	2.2	50	TO-5	
S17353-10K NEW	ф1.0	320 to 1000			500	5.5			
S17353-20K NEW	ф2.0	320 10 1000	300		200	15			
S17353-30K NEW	ф3.0				90	35		TO 6	
S17353-50K NEW	ф5.0				35	85		TO-8	

^{*1:} Area in which a typical gain can be obtained

Spectral response

KAPDB0667

Gain vs. reverse voltage

Gain wavelength dependence

KAPDB0669EA

KAPDB0670EA

^{*2:} Value obtained when operated at the gain indicated in the table

Low bias operation

They can obtain high gain with a bias voltage of 200 V or less, so they are suitable for FSO, optical fiber communications, etc.

Home

^{*1:} Area in which a typical gain can be obtained *2: Value obtained when operated at the gain indicated in the table

Spectral response

Quantum efficiency vs. wavelength

Gain vs. reverse voltage

TE-cooled type

They are TE-cooled type APDs with lowbias operation, capable of high accuracy detection.

Type no.	Built-in APD	Pad	ckage
<u>S4315</u>	S12023-02		
<u>S4315-01</u>	S12023-05		
<u>S4315-02</u>	S12023-10	10-8	
<u>S4315-04</u>	S2384		

Gain-Short Near APD Related Technical Operating **Near infrared type Si APD** For LiDAR Home Lineup stabilized wavelength type infrared type modules principle products note type

Low temperature coefficient

They produce stable gain over a wide temperature range. They are suitable for FSO, optical fiber communications, etc.

Type no.	Effective photosensitive area*1	Spectral response range (nm)	Breakdown voltage max. ID=100 µA (V)	Temperature coefficient of breakdown voltage (V/°C)	frequency*2	Terminal capacitance*2	Gain λ=800 nm	Pad	ckage
<u>S12060-02</u>	ф0.2				1000	1.5			
<u>S12060-05</u>	ф0.5				900	2.5	100	TO-18	
<u>S12060-10</u>	ф1.0		200	0.4	600	6			
<u>\$6045-04</u>	ф1.5	400 to 1000	300		350	12	100	- TO-5	•
<u>\$6045-05</u>	ф3.0				80	50	60	10-5	
<u>\$6045-06</u>	ф5.0				35	120	40	TO-8	

^{*1:} Area in which a typical gain can be obtained

Spectral response

Quantum efficiency vs. wavelength

KAPDB0027EB

Gain vs. reverse voltage

KAPDB0029EB

^{*2:} Value obtained when operated at the gain indicated in the table

850 nm band

These are Si APDs that offer enhanced 850 nm band near-infrared sensitivity. They are suitable for FSO, optical fiber communications, and analytical instruments, etc.

Type no.	Effective photosensitive area*1 (mm)	Spectral	Breakdown voltage max. ID=100 µA (V)	preakdown	frequency*2	Terminal capacitance*2	Gain λ=900 nm	Package
<u>S12426-02</u>	ф0.2	400 to 1100	200	1.1	650	0.5	100	TO-18
<u>S12426-05</u>	ф0.5	400 to 1100	200	1.1	600	1.1	100	10-18

^{*1:} Area in which a typical gain can be obtained

Spectral response

Quantum efficiency vs. wavelength

KAPDB0277EB

• Gain vs. reverse voltage

KAPDB0271EA

^{*2:} Value obtained when operated at the gain indicated in the table

900 nm band

These are Si APDs that realize high sensitivity in the Near-infrared region of 900 nm band. They are suitable for FSO, optical fiber communications, and analytical instruments, etc.

Type no.	Effective photosensitive area*1 (mm)	response	Breakdown voltage max. ID=100 µA (V)	coefficient of breakdown	frequency*2	Terminal capacitance*2	Gain λ=900 nm	Pac	ckage
<u>S12092-02</u>	ф0.2				400	0.4		TO-18	
<u>S12092-05</u>	ф0.5	4404400	350	1.85		0.7	100	10 10	
<u>S9251-10</u>	ф1.0	440 to 1100	350		380	3.6		TO F	
<u>S9251-15</u>	ф1.5				350			TO-5	

^{*1:} Area in which a typical gain can be obtained

Spectral response

Quantum efficiency vs. wavelength

• Gain vs. reverse voltage

KAPDB0082EA

^{*2:} Value obtained when operated at the gain indicated in the table

Gain-Short Near APD Related Technical Operating **Near infrared type Si APD** For LiDAR Home Lineup stabilized wavelength type infrared type modules principle products note type

1000 nm band

These are Si APDs that realize high sensitivity in the Near-infrared region of 1000 nm band. They are suitable for FSO, optical fiber communications, and analytical instruments, etc.

Type no.	Effective photosensitive area*1 (mm)	Spectral response range	Breakdown voltage max. ID=100 µA (V)	Temperature coefficient of breakdown voltage (V/°C)	Cutoff frequency* ² RL=50 Ω (MHz)	Terminal capacitance* ² (pF)	Gain λ=900 nm	Pa	ckage
<u>S8890-02</u>	ф0.2				280	0.2			
<u>\$8890-05</u>	ф0.5	400 to 1100	800	3.5	240	0.5		TO-5	
S8890-10	ф1.0				230	1.5	100		
S8890-15	ф1.5				220	2.5			
<u>S8890-30</u>	ф3.0				220	8.0		TO-8	

^{*1:} Area in which a typical gain can be obtained

Spectral response

KAPDB0064EC

• Gain vs. reverse voltage

KAPDB0066EB

^{*2:} Value obtained when operated at the gain indicated in the table

Gain-Short Operating Related Technical Si APD for LiDAR Home Lineup For LiDAR stabilized wavelength type infrared type modules products note type

Si APD for LiDAR

These are Si APDs with reduced variation in breakdown voltage, reduced dark current, and expanded operating temperatures.

Type no.	Effective photosensitive area*1 (mm)	Spectral response range	Breakdown voltage ID=100 µA max. (V)	Temperature coefficient of breakdown voltage (V/°C)	Cutoff frequency*2 RL=50 Ω (MHz)	Terminal capacitance*2 (pF)	Gain	Packa	ge
700 nm ba	nd								
<u>\$14643-02</u>	ф0.2	400 to 1000	120	0.42	2000	0.7	100 (λ=760 nm)	Glass epoxy	
800 nm ba	nd								
<u>S14644-02</u>	ф0.2	400 to 1000	180	0.63	1200	0.6	100	Glass epoxy	
<u>S14644-05</u>	ф0.5	400 to 1000	160	0.00	1000	1.6	(λ=800 nm)	спаѕѕ ероху	
900 nm ba	nd								
<u>S14645-02</u>	ф0.2	400 to 1100				0.5			
S14645-02F*3	ψ0.2	850 to 950	195	1.1	600	0.3	100	Glass enovy	
<u>S14645-05</u>	φ0.5	400 to 1100		1.1	000	1	(λ=900 nm)	Glass epoxy -	
S14645-05F*3	ф0.5	850 to 950				·			والسياق

^{*1:} Area in which a typical gain can be obtained *2: Value obtained when operated at the gain indicated in the table *3: With on-chip filter

Gain-Short Near APD Related Technical Operating Si APD for LiDAR For LiDAR Home Lineup stabilized wavelength type infrared type principle modules products note type

Spectral response

[S14645 series]

KAPDB0444EA KAPDB0436EC

• Gain vs. reverse voltage

[S14643-02]

KAPDB0439EA

S14644 series]

[S14645 series]

KAPDB0451EA KAPDB0452EA KAPDB0449EA

Spectral response, Gain vs. reverse voltage

Gain-stabilized type

These are a gain-stabilized APD (GS APD) with a built-in temperature compensation function inside the sensor. This realizes constant gain without the need for temperature adjustment.

			п	eed for temperat	ure adjustmer	11.	
Type no.	Effective photosensitive area*1 (mm)	Spectral response range (nm)		Terminal capacitance*2 f=1 MHz (pF)	Gain* ³	Package	
700 nm b	and						
S15413-02	ф0.2	400 to 1000	1.5	0.6	50 (λ=660 nm)	Glass epoxy	
800 nm b	and						
S15414-02	ф0.2	400 + 4000	1.2	0.6	50 (λ=800 nm)	Glass	
S15414-05	ф0.5	400 to 1000	1.0	1.4		ероху	
900 nm b	and						
S15415-02	ф0.2	400 to 1100	0.5	0.5	50	Glass	
S15415-05	ф0.5	400 (0 1100	0.5	1.1	(λ=905 nm)	ероху	

- *1: Area in which a typical gain can be obtained
- *2: Value obtained when operated at the gain indicated in the table
- *3: Gain-stabilized mode operation

Spectral response

Gain vs. gain control voltage (Typical example: S15415 series)

Operating principle of GS APD

The gain is kept constant by passing a current through the temperature compensation circuit built into the APD chip. It is possible to operate the APD at a constant gain without monitoring the operating temperature.

Features

- · No need to adjust operating voltage due to temperature change
- No need to adjust operating voltage for APD element-to-element variations
- · Adjustable gain by applying voltage to the Gain control terminal

GS APD configuration

KAPDB0647EA

Gain-APD Short Related Technical Operating **APD** modules For LiDAR stabilized Home Lineup wavelength type modules products infrared type principle note type

APD modules

Compact modules integrating APD, low noise amplifier, and bias power supply.

Sensitivity vs. response speed

KACCB0355EB

Type	Type no.	Features				
Standard type	C12702 series	Contains Near-infrared type or short wavelength type APD. FC/SMA fiber adapters are also available.				
High-sensitivity type	C12703 series	High gain type for low-light-level detection				
High-stability type	C10508-01	Digital temperature compensation type, high stability APD module				
High-speed type	<u>C5658</u>	Can be used in a wide-band frequency range (up to 1 GHz)				

Gain-APD Short Related Technical Operating **APD** modules For LiDAR stabilized Home Lineup wavelength type infrared type modules products principle note type

APD modules

These modules are a compact combination of APD, a low noise amplifier, and a bias power supply.

(Typ., unless otherwise noted)

Type		Type no.	Effective photosensitive area*1 (mm)	Built-in APD	Cutoff frequency		Photoelectric	Minimum		Photo
туре	Low band				High band	conversion sensitivity (V/W)	detection limit (nW rms)	Supply voltage (V)	W × D × H (mm)	
	For near	<u>C12702-03</u>	ф1.0	S12023-10	4 kHz –	100 MHz	-6.8 × 10 ⁴	3	- +5	
	infrared	<u>C12702-04</u>	ф3.0	S2384		80 MHz	-2.3 × 10 ⁴	3.6		
Standard	For short	<u>C12702-11</u>	ф1.0	S12053-10	4 kHz	100 MHz	-2.5 × 10 ⁴	5	- +5	
wav	wavelength	C12702-12	ф3.0	S5344		40 MHz	-1.9 × 10 ⁴	6.3		80 × 50 × 23
High sensitivity	<u>C12703</u>	ф1.5	S3884	DC	10 MHz	1.5 × 10 ⁶	0.63	±12		
	<u>C12703-01</u>	ф3.0	S2384		100 kHz	-1.5 × 10 ⁸	0.0063		80 × 50 × 23	
High s	stability	<u>C10508-01</u>	ф1.0	S12023-10A	DC	10 MHz	5×10^5 to $1.25 \times 10^{7*2}$	0.063	±5	60 × 65.6 × 19.6
High	speed	<u>C5658</u>	ф0.5	S12023-05	50 kHz	1 GHz	2.5 × 10 ⁵	16	+12	28 × 50 × 60

^{*1:} Area in which a typical gain can be obtained

^{*2:} Variable gain using a switch

Power supply modules

Making full use of high-voltage power supply technology we accumulated over long years of work with photomultiplier tubes (PMT), we also design high-voltage power supply modules optimized for drive of APD.

Type no.	Input voltage (V)	Max. output voltage	Max. output current	Ripple / Noise peak to peak (mV)	
<u>C14478-03</u>	+4.75 to +5.25	-250	1	10	
C14478-53	+4.75 (0 +5.25	+250	1		

Gain- APD Related Technical Home Lineup principle wavelength type infrared type type modules products note

- Disclaimer
- Metal, ceramic, plastic package products/Precautions
- Unsealed products/Precautions
- Surface mount type products/Precautions
- Inquiries from online

www.hamamatsu.com

- Information described in this material is current as of June 2025.
- Product specifications are subject to change without prior notice due to improvements or other reasons. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

HAMAMATSU PHOTONICS K.K.

KAPD0001E14 Jun. 2025 DN

Optical Semiconductor Sales, HAMAMATSU PHOTONICS K.K.

1126-1 Ichino-cho, Chuo-ku, Hamamatsu City, Shizuoka Pref., 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

U.S.A.: HAMAMATSU CORPORATION: 360 Foothill Road, Bridgewater, NJ 08807, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218

Germany: HAMAMATSU PHOTONICS DEUTSCHLAND GMBH: Arzbergerstr. 10, 82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8 E-mail: info@hamamatsu.de France: HAMAMATSU PHOTONICS FRANCE S.A.R.L.: 19 Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: infos@hamamatsu.fr

United Kingdom: HAMAMATSU PHOTONICS UK LIMITED: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire, AL7 1BW, UK, Telephone: (44)1707-294888, Fax: (44)1707-325777 E-mail: info@hamamatsu.co.uk

North Europe: HAMAMATSU PHOTONICS NORDEN AB:Torshamnsgatan 35, 16440 Kista, Sweden, Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se

Italy: HAMAMATSU PHOTONICS ITALIA S.R.L.: Strada della Moia, 1 int. 6 20044 Arese (Milano), Italy, Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41 E-mail: info@hamamatsu.it

China: HAMAMATSU PHOTONICS (CHINA) CO., LTD.: 1201, Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Chaoyang District, 100020 Beijing, P.R. China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866 E-mail: hpc@hamamatsu.com.cn Taiwan: HAMAMATSU PHOTONICS TAIWAN CO., LTD.: 13F-1, No.101, Section 2, Gongdao 5th Road, East Dist., Hsinchu City, 300046, Taiwan(R.O.C) Telephone: (886)3-659-0080, Fax: (886)3-659-0081 E-mail: info@hamamatsu.com.tw Korea: HAMAMATSU PHOTONICS KOREA CO., LTD.: A-912, 167, Songpa-daero, Seoul, 05855, Korea, Telephone: (82)2-2054-8202, Fax: (82)2-2054-8207 E-mail: sales@hpkr.co.kr