qCMOSカメラ qCMOSカメラ

用途例 | qCMOSカメラ

量子技術

中性原子、イオントラップ

量子コンピューティングにおける量子ビット(Qubit)として、中性原子やイオンは、一つ一つ、真空中にトラップ、配列されて計算に使用されます。それらの量子状態は蛍光を発するかどうかで判定することができますが、その蛍光計測は短時間かつ低光量下で行われるため、高速かつ低ノイズな光検出器が必要となります。ORCA-Quest 2はその低ノイズ、高速な読み出し速度から、原子アレイの全体像観測だけでなく、個々の量子ビットの状態判定を行うことが可能です。

Rb原子アレイの蛍光イメージング

Rb原子アレイの蛍光イメージング 

ご提供:大阪大学 山本俊 様、小林俊輝 様

量子光学

量子光学の研究では、光子の量子的性質を研究、利用するために単一光子源を使用します。その際に、同様に単一光子検出器が必要となり、近年では検出器に入射した光子の数を識別できる検出器の必要性が出てきています。カメラ技術の新たなコンセプトである、光子数識別可能なカメラが、この分野で新たな発見をもたらすことが期待されています。

補償光学で波面を補正

量子イメージングの実験系構成

補償光学 比較

量子イメージング画像

ご提供:Prof. Miles Padgett (University of Glasgow)

ライフサイエンス

超解像顕微鏡法

超解像顕微鏡法とは回折限界を越える空間分解能を得るための手法を指しており、高い空間分解能を得るために低ノイズ、かつ小ピクセルサイズの科学計測用カメラを必要とします。

超解像画像 ORCA-Quest

超解像画像 ORCA-Quest

qCMOSカメラ / 4.6 μm  pixel size / 超解像システム:VT-iSIM

超解像画像 ORCA-Fusion

超解像画像 ORCA-Fusion

Gen Ⅲ sCMOSカメラ / 6.5 μm pixel size / 超解像システム:VT-iSIM

実験セットアップ(カメラ:ORCA-Quest)

実験セットアップ(カメラ:ORCA-Quest)

ご提供:Steven Coleman (Visitech international Ltd.)

生物発光計測

近年、生物発光顕微鏡法が、従来の蛍光顕微鏡法に対して、励起光を必要としないなどユニークな特徴をもつという理由から注目を集めています。生物発光の主な欠点としては、その非常に小さい発光量が挙げられており、十分な画質の画像を取得することが難しいことにあります。そのため、生物発光の観測には長い露光時間を必要とするため、長時間露光下でも十分に高感度なカメラが必要とされます。

NanoLuc融合たんぱく質ARRB2と、Venus融合たんぱく質V2Rが近接してBRETが起きている様子

BRETの撮像例

視野全体像(対物レンズ:20×、露光時間:30 sec、ビニング:4×4)

顕微鏡システム外観

顕微鏡システム外観

ご提供:東北大学大学院薬学研究科 分子細胞生化学分野 柳川正隆 様

植物の遅延蛍光

植物は光合成のために吸収した光エネルギーのごく一部を、時間をかけて光として放出します。この現象は遅延蛍光と呼ばれています。この僅かな光を検出することにより、化学物質、病原体、環境、その他ストレス要因が植物に与える影響を観察することが可能です。

c15550-20UP 用途4

遅延蛍光(励起光消光後、10 秒経過してから10秒間露光)

天文

ラッキーイメージング

地上から星を観察する場合、大気のゆらぎにより、星像がぼけます。しかし、短時間露光であれば、その時間内では大気が安定し、きれいな画像が得られることがあります。このため多くの画像を取得し、きれいな画像のみを位置を合わせながら積算する手法がラッキーイメージングです。

オリオン座大星雲

オリオン座大星雲 3波長フィルタを使用したカラー画像

顕微鏡システム外観

顕微鏡システム外観

補償光学

補償光学技術は、大気ゆらぎにより乱れた波面を即時に補正し、望遠鏡の性能限界における最も歪みのない鮮明な星像を得る手法です。リアルタイムかつ高精度な波面補正を実現する装置にするため、波面の乱れを測定するカメラには、高速な読み出し性能と高い分解能が求められます。また、より暗い天体やレーザ人工星など、非常に光子数が少ない状況で波面補正が行われる場合もあり、カメラには高い感度が必要となります。

補償光学で波面を補正

補償光学 比較

※ 提供:京都大学大学院理学研究科附属天文台 山本広大 様

高エネルギー物理学/放射光実験

X線や高エネルギー粒子のイメージング用途で、可視光に変換するシンチレータをカップリングした科学計測用カメラが使用されています。瞬間的な現象をリアルタイム検出するために、低ノイズかつ高速なイメージング検出システムを必要としています。

マウス胎仔のX線位相CT像

マウス胎仔のX線位相CT像

カメラ:ORCA-Quest / 光学系:X線イメージングシステムM11427 / ビームライン:SPring-8 BL20B2 / 露光時間:15 msec / トータル計測時間:6.5 min

測定光学系全景

測定光学系全景

カメラ付近拡大

カメラ付近拡大

ご提供:JASRI散乱・イメージング推進室 主幹研究員 星野真人 様

ラマン分光

物質に光を照射すると、光と物質の相互作用が発生します。このうち、入射光とは異なる波長に散乱されるものをラマン散乱と呼び、この波長を測定することにより、物質の特性を測定する手法をラマン分光と言います。ラマン分光により、分子レベルの構造解析が可能であり、これにより化学結合、結晶性等の情報が得られます。

ラインスキャン型ラマンイメージングシステムにおけるqCMOSとEMCCDのスペクトル比較(1画素の光量が等しい条件)

ラマン画像

ラマン画像

qCMOS

qCMOSのラマンスペクトル

EM-CCD

EMCCDのラマンスペクトル

@10 photon/pixel/frame, 532 nm laser excitation

参照資料(qCMOSカメラのラマンイメージングへの応用)

科学計測用カメラ特集サイト

科学計測用カメラの情報を掲載する当社の特集サイトです。

カメラの種類や性能は多岐に渡るため、各アプリケーションに応じてベストなカメラを選定することが重要です。

カメラの性能を十分に理解し、選定いただくための技術情報やシミュレーションツールを始め、実際のアプリケーションでの利用例も掲載しています。