qCMOS cameras qCMOS cameras

Applications | qCMOS® cameras

Quantum technology

Neutral atom, Trapped ion

Neutral atoms and ions are aligned one by one in an array to be utilized as Qubits for Quantum computing. The qubit states can be determined by observing the fluorescence from each of them. The measurement of the fluorescence needs to be done in short time and then photodetectors with very low noise and high speed are needed. ORCA®-Quest 2 can do both of diagnosis of the whole qubit array and state detection of each qubit with very low noise characteristics and high speed readout. Also, the QE covers wide range of wavelength for major ion and atom species.

Fluorescence imaging of Rb atom array

Fluorescence imaging of Rb atom array with ORCA-Quest 

Data courtery of: Takashi Yamamoto and Asst. Prof. Toshiki Kobayashi, Osaka University

Quantum optics

Quantum optics uses single photon sources to make use of the Quantum nature of the single photon.The quantum optics research also uses single photon counting detectors, and now there are emerging needs of photon number resolving detectors to distinguish photon numbers coming into the detectors.A photon counting camera, a new concept in camera technologies, is expected to make a new discovery in this field.

Experimental setup of Quantum imaging

Experimental setup of Quantum imaging with ORCA-Quest

Quantum imaging

Images of Quantum imaging with ORCA-Quest

Data courtery of: Miles Padgett, University of Glasgow

Case study

To reach a large-scale general-purpose quantum computer, several approaches are being proposed (e.g., superconducting qubit, trapped ion qubit), but it has yet to be decided which one is the winner. A scientific camera is commonly used in a quantum computer with neutral atom, one of the most promising qubits. We interviewed Professor Takashi Yamamoto and Assistant Professor Toshiki Kobayashi of Osaka University, who are using ORCA-Quest for neutral atom quantum computing.

ORCA-Quest qCMOS camera from Hamamatsu was chosen as a camera for mid-circuit imaging in an error-corrected neutral-atom quantum computer. The experiments was led by Harvard university in close collaboration with QuEra Computing, MIT, and NIST/UMD.

In previous studies, EM-CCD was mainly used for imaging, mainly because EM-CCD has imaging sensitivity at the single-photon level. With the advent of qCMOS, it attracts the attention of many researchers in optical clock field. We conducted comparative experiments in the Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences.

Life science

Super resolution microscopy

Super resolution microscopy refers to a collection of methods to get a microscope image with higher spatial resolution than diffraction limit.The super resolution microscopy needs scientific cameras with combination of very low noise and small pixel size, resulting in a higher resolution. 

Super resolution images from ORCA-Quest

Super resolution images from ORCA-Quest

qCMOS camera / 4.6 μm  pixel size

Super resolution images from ORCA-Fusion

Super resolution images from ORCA-Fusion

Gen III sCMOS camera / 6.5 μm pixel size

Experimental setup with ORCA-Quest

Experimental setup with ORCA-Quest

Provided by Steven Coleman at Visitech international with their VT-iSIM, high speed super resolution live cell imaging system.

Bioluminescence

Bioluminescence microscopy has been gaining attentions because of the unique advantages against the conventional fluorescence microscopy, such as no need of excitation light.The major drawback of the bioluminescence is its very low light intensity, resulting in long exposure time and low image quality.The bioluminescence research needs highly sensitive cameras even in long exposure.

NanoLuc fusion protein ARRB2 and Venus fusion protein V2R are nearby and BRET is occurring.

CROP image

Overall image in the field of view(Objective: 20× / Exposure Time: 30sec / Binning: 4×4)

Appearance of the microscope system

Appearance of the microscope system

Data courtery of: Dr.Masataka Yanagawa, Department of Molecular & Cellular Biochemistry Graduate School of Pharmaceutical Science , Tohoku University

Delayed fluorescence in plants

Plants release a very small portion of the light energy they absorb for photosynthesis as light over a period of time. This phenomenon is known as delayed fluorescence. By detecting this faint light, it is possible to observe the effects of chemicals, pathogens, the environment, and other stressors on plants.

Delayed fluorescence of ornamental plants

Delayed fluorescence of ornamental plants (exposure for 10 seconds after 10 seconds of excitation light quenching)

Case study

The Cell Biophysics Laboratory of the Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Gifu University, is researching to elucidate the mechanisms of molecules present within cells and on cell membranes. In 2022, this laboratory introduced the ORCA-Quest as a camera for single-molecule fluorescence observation. We interviewed Professor Kenichi Suzuki and Researcher Koichiro Hirosawa of this laboratory, as well as Rinshi Kasai, who was a member of the laboratory until May 2023 and is currently Unit Head of the Advanced Bioimaging Research Division at the National Cancer Center Research Institute, about the reasons for introducing ORCA-Quest, their experience using it, and the outlook for future research.

Bioluminescent microscopy’s unique advantages are pushing researchers to challenge it against conventional fluorescent methods. When detecting and imaging live cells and animals, the use of bioluminescence reporters has shown to be a promising method, especially in neuroscience research. Dr. Michael Krieg, from ICFO, Institut de Ciencies Fotòniques, Castelldefels, Spain, and his collaborators demonstrate volumetric imaging of fast cellular dynamics by exposing the advantages and pushing the limits of bioluminescence microscopy on Caenorhabditis elegans and other biological model organisms.

Presently doing research at the Max Planck Institute for Biological Cybernetics in Germany, Dr. Drew Robson methodically develops the different approaches to observe the zebrafish larvae brain function during its natural behavior with a quantitative photon number-resolving camera.

Astronomy

Lucky imaging

When observing stars from the ground, the image of the star can be blurred due to atmospheric turbulence therefore substantially reducing the ability to capture clear images. However, with short exposures and the right atmospheric conditions, you can sometimes capture clear images. For this reason, lucky imaging is a method of acquiring a large number of images and integrating only the clearest ones while aligning them.

Orion Nebula

Orion Nebula (Color image with 3 wavelength filters)

Imaging setup

Imaging setup

Adaptive optics

Adaptive optics is a method where systems immediately correct the wavefront of incoming light which is disturbed by atmospheric fluctuations. In order to perform real-time and highly accurate wavefront correction, a camera needs to get images with high speed and high spatial resolution. In addition, the camera also needs high sensitivity because the wavefront correction is performed in a very dark condition where a laser guide star is measured.

Wavefront correction by adaptive optics

 Adaptive optics

Comparison of adaptive optics

Comparison of adaptive optics

*Data courtery of: Kodai Yamamoto, Ph.D., Department of Astronomy, Kyoto University

HEP / Synchrotron

For imaging of X-ray or other kinds of high energy particles, a scientific camera coupled with a scintillator is often used. Low noise and high speed are required in the imaging system to detect momentary phenomena.

X-ray phase contrast CT image of mouse embryo

X-ray phase contrast CT image of mouse embryo

X-ray phase contrast CT image of mouse embryo from ORCA-Quest combined with High resolution X-ray imaging system (M11427)

Exposure time: 15 msec, Total measurement time: 6.5 min

Experimental setup

Experimental setup

Camera setup

Camera setup

Data courtery of: SPring-8 BL20B2 beamline by Dr. Masato Hoshino, Senior researcher in Japan Synchrotron Radiation Research Institute (JASRI)

Raman spectroscopy

Raman effect is the scattering of light at a wavelength different from that of the incident light, and Raman spectroscopy is a technique for determining the material properties by measuring this wavelength. Raman spectroscopy enables structural analysis at the molecular level, which provides information on chemical bonding, crystallinity, etc.

Raman spectrum (single frame) comparison under condition of equal photon number per pixel in line scan type Raman imaging system

Raman Image

Raman Image

qCMOS

Raman spectrum comparison of qCMOS

EM-CCD

Raman spectrum comparison of EMCCD

Special site

This site provides information on scientific cameras.

Since there is a wide range of camera types and performance, it is important to select the best camera for each application.

It introduces technical information, simulation tools, and examples of actual applications to help you fully understand the performance of the camera and select the best one for your application.

We publish case study articles of our ORCA-Quest customers.

Camera application case study collection​

Synchrotron radiation analysis "Ryugu" camera application case-study ​

Asteroid Ryugu, is thought to still contain water and organic compounds from 4.6 billion years ago when our solar system likely formed. We interviewed Mr. Uesugi of the Japan Synchrotron Radiation Research Institute (JASRI), who was in charge of analyzing the Ryugu samples, about the methods and results of the analysis, as well as future prospects.​

This case study includes the interview with Mr. Uesugi and features our lineup of cameras suitable for synchrotron radiation imaging.

Astronomy camera application case-study ​

Astronomy is a field where various research is being conducted to discover and explore unknown celestial bodies and astronomical phenomena. This brochure introduces examples of such applications and our cameras suitable for each application.​

Contact us for more information.

  • Literature
  • Price
  • Delivery
  • Custom order
  • Demo
  • Support
  • Other

Contact us